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Overview: Selecting the social homophily statistic

When comparing social homophily across the 23 states of India, care must be put into the
selection of the appropriate test statistic. It is essential to select a test statistic that, holding social
homophily constant, does not scale with a state's representation. We discuss two test statistics
that fail to meet this criterion and show how these statistics provide motivation for the model we
ultimately use.

Statistic 1: Fraction of total ties that stay within a state

The measure of social homophily considered in [1, 2] de�nes homophily as the fraction of total
ties from a state that stay within the same state, but due to measuring absolute di�erences instead
of relative di�erences, this is biased unfairly against states with small representation. Consider the
following example:

Let N be the total number of nodes, Wk be the fraction of nodes in state k, Dk be the average
number of neighbors of nodes in state k that are from di�erent states, and Sk be the average number
of neighbors of nodes in state k that belong to the same state. The measure of homophily considered
in [1, 2] de�nes homophily as the fraction of total ties that are within the same state. This measure
is normalized under a null model that ties are formed without regard to state membership. This
measure is called inbreeding homophily and is measured as Hk−Wk

1−Wk
where where Hk = Sk/(Sk+Dk).

When the alternative hypothesis is true, as is the case here where each state demonstrates signi�cant
social homophily, then inbreeding homophily lacks good interpretation and comparability between
states of di�erent sizes.

For example, consider the Delhi region, which has a Wk = 4.1%. Therefore under the null
hypothesis of indiscriminate pairing, we would expect the fraction of edges from the Delhi block
that stay between people from the Delhi block (Hk) to be 4.1%. Instead, this observed measure
is 36.2%, about 9-fold greater than what is expected under the null and showing signi�cant social
homophily. Compare this to the Jammu and Kashmir region, which has very low representation of
Wk = 0.019%. Under indiscriminate pairing we would expect only 0.019% of the total edges from
people from the Jammu and Kashmir region to stay between people from that region, however the
observed measure is 15.3%. Despite this being 805-fold more than what we would expect under
the null hypothesis, the inbreeding homophily measure for Jammu and Kashmir is a mere 0.153,
whereas that same measure for Delhi is 0.335 and would lead one to believe that Delhi exhibits
greater homophily. In this case, looking at Hk relative to Wk to evaluate social homophily leads
to qualitatively di�erent conclusions when looked at on the di�erence scale as opposed to the ratio
scale. The fact that the scale alone can so drastically alter one's conclusion makes the statistic
untrustworthy for our purposes.

Statistic 2: Stochastic Block Model
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A standard stochastic block model approach[3], assumes an equal likelihood of forming network
edges between nodes in the same state. The Kumbh social network is separated into 23 blocks, one
for each state. The edge probabilities for within-block edges are pkk, k = 1, . . . , 23, one for each of

the state. For the kth block, let A
(k)
ij = 1 if nodes i and j are connected by an edge, and A

(k)
ij = 0

otherwise, for i 6= j ∈ {1, . . . , nk} where nk is the number of nodes in block k. The pkk are calculate
as:

pkk =

∑nk−1
i=1

∑nk

j=i+1 A
(k)
ij

nk(nk − 1)/2

The pkk o�er a natural comparison of social homophily across the di�erent states. Large values of
pkk indicate strong social homophily between individuals in block k, and small values of pkk indicate
weak social homophily. In Figure S1, there appears to be a strong negative association between state
representation at the Kumbh and social homophily. Though this seems like compelling evidence, it
should not be trusted due to its high sensitivity to model mispeci�cation.

The model assumption of the standard stochastic block model used here is that each pair of
individuals within the same state have the same probability of being socially connected. The true
model is likely more complicated, as states are likely composed of numerous independent friendship
groups. Consider the �ctitious example presented in Figure S2. In this case, the edge probability
within a friendship group is assumed to be 0.20, whereas the edge probability between two people
from di�erent friendship groups is lower at 0.04. In this example, we compare two states, state A
and state B. State A is composed of four friendship groups of equal size, and state B is composed
of only two such groups. As demonstrated in Figure S2, despite having the same within-group edge
probability of 0.20 and the same between-group edge probability of 0.04, and therefore the same
degree of social homophily, the average overall edge probability is twice as large in state B than it is
in state A. This average overall edge probability is equivalent to the pkk measured by the stochastic
block model. As a result, states with greater representaiton at the Kumbh will have larger values
of pkk even if the they are no more homophilous than states with less representation.

Though friendship groups within state are unobserved, if this internal block structure is ignored,
Figure S2 makes it clear that strong biases can emerge when comparing pkk between states with
di�erent size representation at the Kumbh. To avoid this issue we can restrict the analysis to within-
friendship group pairs of nodes, ignoring the between-friendship group pairs. In other words, we
target only the network ties in the blue friendhsip groups of Figure S2 and ignore the red regions.
Unfortunately, these friendship groups are unobserved. We circumvent this missing information
by restricting to connected triangles under the assumption that if a pair of nodes is a maximum
distance of 2 edges apart from each other, then they both belong to the same friendship group.
Under this approach, the situation in S2 would correctly estimate that both states A and B have
the same strength of social homophily.

Estimating the proportion of days customers do not use their phone at the Kumbh.

Customers are only observed when they use their phone. This introduces a potentially large
missing data component which can bias attendance estimates downwards. When estimating the
daily attendance at the Kumbh, unless the missing data is properly accounted for, the customers
who do not use their phone on a particular day will bias attendance downwards for that day (Figure
S3). With some assumptions on the nature of the missing data, this bias can be adjusted for.
Assume that each customer uses their phone on a day with probability p, independently for each
day. If there were no censoring, then we could estimate p by summing the number of cell phones used
each day across the full 90 day period (

∑90
d=1

∑23
r=1 Nrd) and then divide that by the cumulative

number of unique individuals (C) times their average length of stay (L̄ = 18.1 days).
To adjust for censoring, the number of censored days prior to the �rst phone usage follows a

geometric distribution with parameter p. This modeling assumption holds if the likelihood of phone
usage on each day is independent with equal probability. The geometric mean is (1 − p)/p, which
can be interpreted as the expected number of censored days where a person comes to the Kumbh
but does not use their phone and so is unobserved for those days. The same applies to the censored
days after the �nal phone usage, so in total there are an expected 2(1 − p)/p unobserved days for
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each individual where they were at the Kumbh but did not use their phone. This leads to the
following estimate of p:

p̂ =

∑90
d=1

∑23
r=1 Nrd

C · L̄ + C · 2 · 1−p̂
p̂

Solving for p̂ yields:

p̂ =

∑90
d=1

∑23
r=1 Nrd − 2 · C

L̄ · C − 2 · C

With C = 4, 538, 652 and
∑90

d=1

∑23
r=1 Nrd = 38, 629, 454 we reach a �nal estimate of p̂ = 40.4%.

Without adjusting for censoring, the estimated probability rises to 47.0%.

Attendance estimates and the corresponding con�dence intervals.

Though the CDR data allows us to estimate daily and cumulative cell phone usage, we need to
extrapolate by market share, proportion of wireless subscribers in India (V = 71.3% in 2013), as
well correct for unobserved individuals who do not use their phones in order to arrive at estimates
for the total daily and cumulative attendance at the Kumbh. Let U be the proportion of observed
customers, i.e. the cumulative proportion of customers that attended the Kumbh and used their
phone at least once over the three month period from January 1st to March 31st. Let Mr be the
market share of Bhart Airtel in state r during the �rst quarter of 2013 (listed in Table S1). Recalling
the p̂ = 0.404 from the preivous section, we estimate the total predicted attendance of the Kumbh
on day d, Pd, as:

P̂d =

23∑
r=1

Nrd

p̂ · M̂r · V̂ · U

To construct a con�dence interval we condition on the Nrd and the cumulative attendance C.
The three random variables, V̂ , M̂r, and p̂, contribute to the variability. We assume each M̂r is a
binomial proportion with size Nrd and probability Mr. With 1.27 billion people in India in 2013, we
assume V̂ is a binomial proportion with size 1, 270, 000, 000 and probability V = 0.713. The only
random component of p̂ is L̄ ∼ N(18.1, 26.22/C) = N(18.1, 1.51 · 10−4), where normality follows
from the central limit theorem. Thus, in order to generate random instances of P̂d we need only
generate a random instance of L̄, M̂r, and V̂ . This is repeated 1, 000 times and the 2.5% and 97.5%
quantiles represent the 95% con�dence bounds. Unfortunately we have no means of quantifying
uncertainty in U , which is why we instead provide the sensitivity to this parameter in panel C of
Figure 2 in the main text.

For estimating cumulative attendance, the same extrapolations are used except M̂r no longer
applies, because so long as a person uses their phone at least once it doesn't matter what proportion
of the days at the Kumbh their phone is inactive. For that reason the cumulative estimate of the
lower bound on January 1st is actually lower than the daily estimate of the lower bound, because
the daily estimate is divided by the M̂r. This discrepancy is evident when comparing January �rst
in panels A and B of Figure 2 of the main text.
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Fig. S1 Stochastic block model edge probabilities by state. The pkk represent the probability

that any random two nodes in state k share an edge, assuming this probability is the same

for all pairs of nodes in state k. The strong association between this probability and state

representation is heavily biased under model mispeci�cation as is more likely the case here,

exagerating the result. The baseline probability is calculated assuming no block structure,

i.e. all nodes have the same probability of being connected to one another regardless of state

membership.
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Fig. S2 Simple illustration of the bias produced by the stochastic block model under model

misspeci�cation. Social groups are displayed in blue, and are assumed to all be of equal

size. The probability that two people in the same social group share an edge is 0.20. The

probability that two people in di�erent social groups share an edge is 0.04. States A and B are

constructed to have identical homophily, i.e. the probability of an edge between two people

in the same social group is the same for both states. The average edge probability displayed

takes the average over all possible pairs of nodes in the state.
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Fig. S3 Schematic for estimation of the probability of phone usage on any given day. Each

square represents a di�erent day, and it is assumed that a person arrives at and departs from

the Kumbh only once. The estimated proportion of days a phone is used is calculated as the

total number days a phone is used summed across all customers, divided by the length of stay

summed across all customers.
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Table S1 State Acronyms and Bharti Airtel market share. The acronyms for the twenty-three

telecommunications states in India used by Bharti Airtel are listed. In addition, the market

share of Airtel as measured by the percentage of the total number of people in the state with

some form of subscription to a phone plan, taken from the month of January 2013.

State Name State Acronym Airtel Market Share

Karnataka KK 42.6%

Bihar BH 40.8%

Rajasthan RAJ 39.7%

Jammu and Kashmir JK 38.5%

Orissa OR 36.5%

Himachal Pradesh HP 36.2%

Andhra Pradesh AP 36.1%

Assam AS 34.6%

North East NE 33.6%

Delhi DEL 32.9%

Chennai CH 32.6%

Punjab PB 30.9%

West Bengal WB 28.2%

Madhya Pradesh MP 28.1%

Uttar Pradesh East UPE 26.2%

Kolkata KOL 25.0%

Tamil Nadu TN 20.4%

Maharashtra MAH 19.0%

Uttar Pradesh West UPW 17.5%

Gujarat GUJ 17.2%

Mumbai MU 16.5%

Haryana HR 15.7%

Kerala KER 13.7%
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