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A Assortativity Coefficients

In Table A1l we show the assortativity coefficients
for the directed unweighted network. The coefhi-
cients were calculated for all combinations between
in-degree and out-degree. For instance in-degree —
out-degree correlation means the tendency that a
node of high in-degree has a directed link to a node
of high out-degree. We find that the directed net-
work is still weakly disassortative with respect to
the degree. The relatively high value for out-degree —
in-degree correlations maybe explained by the fact
that many small premises trade to nodes of large
in-degree, i.e. slaughterhouses or traders.

Table A1l: Degree assortativity coefficients for the di-
rected unweighted network.
Correlation r
in-degree — in-degree -0.086
in-degree — out-degree  -0.063
out-degree — in-degree -0.13
out-degree — out-degree  -0.09

B Targeted Node Removal

In addition to the results in the main text, we com-
pute the size of the GSCC after removing nodes with
respect to the following centrality measures:

eigenvector centrality. Cr — Correlates with the
probability that a node is visited in a random
walk on the network.

pagerank. Cp — similar to Cg, but links between
arbitrary nodes are possible with a small proba-
bility.

Katz centrality. C'x — Ability of a node to have
shortest path to other nodes, where shorter
paths have a stronger weight.

Figure B1 shows the impact of centrality based
node removal for all considered centrality mea-
sures. Although node removal based on eigenvector-
centrality, Katz-Centrality or Pagerank still performs
better than random node removal, degree between-
ness and closeness are more appropriate measures
for targeted node removal.
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Figure B1: Impact of centrality based node removal, when
up to 1 % of the nodes are removed. Cp-Betweenness,
Cc-Closeness, Cg-FEigenvector, Ck-Katz-Centrality, Cp-
Pagerank. Size of giant strongly connected component is
normalized to unity.

C Centrality in Components

In Figure C1 we show the centrality of each node re-
solved by its giant component membership. Panel a)
demonstrates that nodes in the GIC and GSCC have
a long range. On the other hand, these nodes have
a low reachability. The reachability of a node is the
number of nodes that can reach that node, i.e. its
range in the reversed network. Panel b) shows that
many nodes of high out-degree can be found in the
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GIC and many high in-degree nodes are located in
the GOC. Furthermore, the correlation between in-
degree and out-degree is relatively high in the GSCC.
The GIC and GSCC also contain the nodes of high
closeness (Panel c)). As expected, nodes with high
betweenness are located on the GSCC.
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(c) Closeness vs. betweenness.

Figure C1: centrality measures for different giant clus-
ters.

D Weighted Network

In this section we reproduce the results of the static
network in the main text, but take the edge weights

into account. We weight the edges of the network
according to the number of traded animals.

First we focus on the large scale structure of the
weighted network. For the component structure, the
edge weight does not play any role, since component
structure is a purely topological property of the sys-
tem. The average shortest path distance is computed
using Dijkstra’s algorithm in the weighted network.
We find the average shortest path length to be 9.7
and the diameter (longest shortest path length) to be
30. This implies that weighted shortest paths are on
average twice as long as unweighted shortest paths.

The assortativity coefficients for the weighted net-
work are shown in Table D1. Mixing coefficients
for federal state, district and municipality are only
marginally influenced by edge weight. Also the
results about the dominant federal states remain
similar to the unweighted case: Inter-state links
are mainly formed between North Rhine-Westphalia
(NW) and Lower Saxony (NI) as well as Bavaria
(BY) and Baden-Wuerttemberg (BW). These links
make up 38 % of the total trade volume. The trade
between NW and NI alone accounts for 29 % of all
inter-state trade connections. Concerning the Pareto-
principle, 19.3 % of the weighted edges make up 80.7
% of all trade volume.

We find that the weighted degree correlations take
similar values for all combinations of in-degree and
out-degree. This reflects the fact independent of the
combination of degrees, trade is balanced for each
pair of premises.

Table D1: Assortativity coefficients
categories for the weighted network.

between different

Correlation r
Federal state 0.75
District 0.38
Municipality 0.15
degree — degree -0.050
in-degree — in-degree -0.041
in-degree — out-degree  -0.043
out-degree — in-degree ~ -0.040
out-degree — out-degree -0.042

We now focus on the microscopic structure of the
weighted network. Edge weights can be used in order
to compute node centrality more accurately. The
weighted degree distribution shows a similar shape
as for the unweighted case. Figure D2 shows the
edge weight distribution of the network. Weight is
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measured in terms of total number of traded animals
during the observation period.
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Figure D2: Fdge weight distribution.

The edge weight plays a significant role for the
computation of shortest paths as it is implicitly con-
tained in most centrality measures. If for instance
1000 animals have been traded from node ¢ to node
7 and 10 animals have been traded between nodes
i and k, the weight of the edge (i, ) is significantly
higher and this edge would probably be traversed in
a shortest path.

We compute the centrality measures as in the main
text for the weighted network. Figure D3 shows the
impact of node removal based on weighted centrality
measures. The results show qualitatively the same
behavior as for the unweighted case.

Weighted
1.0

1 —Cg —Ck random
o 1 N —Cc —Cp
N b} [y —Cg -—Cp
a - T}
3 05 TSI
) i AN
I >

0 |
0 200 400

nodes removed

Figure D3: Impact of centrality based node remowval in
the weighted network.

Overall we obtain a similar picture as for the un-
weighted case: Nodes of large degree (i.e. sum of
trade volume to neighbors) or betweenness perform
well for targeted intervention measures. It is remark-
able however that the degree shows a good perfor-
mance, when only relatively few nodes are removed.

Closeness performs significantly worse than in the
unweighted case.
We conclude that:

1. any centrality based intervention performs sig-
nificantly better than random intervention!

2. removal of high weight nodes is efficient for re-
moval of up to 100 nodes.

3. removal of high betweenness nodes is efficient
for removal of more than 100 nodes.

4. the average edge weight corresponds to a very
high infection probability per edge.

Edge Weight vs Infection Probability. Finally,
we estimate how edge weights can be mapped onto
infection probabilities. Every transport of one or
more infectious animals is equally infectious.

First, we compute the probability that ezactly one
animal is infectious P(X = 1) for a transport going
from farm ¢ to j and w animals are transported.
This probability is given by a binomial distribution
P(X =1) = byp(X = 1), where p is the probability
that an animal is infected in the source node i. This
probability is given by the prevalence in node 1.

Second, we compute the probability that at least
one animal is infectious P(X > 1) for a transport
going from farm ¢ to j. The probability is given
by P(X > 1) = Byp(X = 1), where By ,(X) is
the complementary cumulative distribution function
(CCDF) of by p(X). The in-farm prevalence for dis-
eases relevant here (classical swine fever, Aujeszky’s
disease, foot and mouth disease) is typically 30-50 %
at the time of detection [2].

For the data set considered here we observe an
average edge weight of w ~ 100 for every trade trans-
action (considering the aggregated edge weight would
give Wiotal &~ 2000). Assuming that the prevalence
in the source farm is 30 % as explained above, i.e.
p = 0.3, it follows that the probability that an aver-
age trade link is infective is given by

P(X >1)=Bgp(X =1) =~ (100 — 107 % ~ 1,

(1)
where By 5(X) is the complementary cumulative dis-
tribution function of the binomial distribution. This
means that the expected infection probability per
trade transaction is almost 1. Consequently, the
probability of infection if significantly smaller than 1
only for low volume trade transactions.
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E Node Activity over Time

Figure E1 shows the fraction of active nodes over
time for two aggregation windows. For the 84 d
aggregation window, the annual loss is approximately
2,800 nodes.
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Figure E1: Development of the node activity over the
observation period.

F Prudent Contact Tracing

In the tracing procedure mentioned in the main
text a pathogen is assumed to only take one step at
each snapshot. There might be necessity for some
pathogens that multiple steps are allowed in every
snapshot. In the context of contact tracing, we refer
to this circumstance as prudent contact tracing. This
corresponds to the situation that a pathogen goes
from node ¢ to node j and then from node j to node
k and so forth at the same day. In order to take this
into account, we add allow for arbitrary long paths
in each snapshot [1]. Given a temporal network as a
sequence of adjacency matrices A = A1, Ao, ..., Ap,
we define the long path corrected network as

B=Y ALY AL ....)) AL
i=1 =1 =1

where D is the diameter of the aggregated network.
The measured value for the diameter is D = 18 (see
main text). Thus, we allow for a maximum of 18
steps in each snapshot. This value can be revised
downwards depending on assumptions about the dis-
ease under consideration or data quality. Given the
path corrected network, prudent contact tracing can
be done using the method as described in the main
text, but with the temporal network as defined in

2).

(2)

Figure F1 shows the range of a node using the
standard approach vs. the prudent range computed
using (2). The deviation between the two is 148 on
average.
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Figure F1: Temporal range vs. prudent range for all
nodes of the network. Deviation is 148 on average.

Considering the large scale picture of the network,
the long path correction does not make a significant
difference. Figure F2 shows the path density of the
standard approach and the path density computed
using (2). The curves are almost identical.
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Figure F2: Path densities for the network given by A
(standard) and B (prudent).
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