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[Framework and main aim of the model] 

Probe design was initialized by choosing the diameter 𝜙  (characteristic probe size, also shown in 

Figure 1A) and the deployment rods. In particular, we firstly chose 𝜙 = 30 mm for ease of development, 

namely to address the detailed design of miniaturized shape-lockers while not introducing technological 

challenges incommensurate with the current developmental stage. Then, in order to confer enhanced 

elasticity to the probe, we selected commercially available superelastic NiTi rods (Euroflex, Pforzheim, 

Germany) with Young modulus 𝐸 ≅ 58 GPa and Poisson ratio 𝜈 ≅ 0.33 [1-3]. In particular, with reference 

to Figure 1B, we chose 𝜙𝑅 = 0.8 mm (rod diameter) and 𝑑 = 14 mm (distance of the rod center from the 

center of the shape-locker; it is the same for the distal disk). We deliberately selected a rather extremal value 

for 𝑑 in order to maximize the probe bending stiffness in the locked configuration (by maximizing the area 

moment of inertia of the rods, with reference to classical beam theory [4]). 

 

 

Figure 1. Probe concept. (A) Schematic of the probe consisting of two interlaced continuum robots (CRs); the probe 

diameter 𝜙 and the span ℓ are also indicated, together with the main components of each robot. (B) Shape-locker 

concept highlighting the strong symmetry that underpins the interlaced configuration: each shape-locker must enable 

the simultaneous operation of both CRs. (This figure replicates Figures 1A-B of the main text, for ease of presentation.) 

 

We then introduced a mathematical model in order to obtain a design value for the probe span ℓ 

(indicated in Figure 1A). In more detail, we studied the statics of an idealized probe section to be deployed 

so as to build a circular track portion with curvature 𝜅 (we considered a quasi-static deployment, as most 

likely for common applications). For any fixed value of 𝜅, the model aimed at determining the span ℓ̂ =

ℓ̂(𝜅) that allows the probe section to build the sought track portion, within a chosen relative tolerance 𝜖. 

Such a tolerance is properly defined in the sequel, yet let us anticipate that we adopted 𝜖 = 5 %, so that all 

the fixed working parameters (namely 𝜙, 𝐸, 𝜈, 𝜙𝑅, 𝑑 and 𝜖) are now stated.  

  

mailto:edoardo.sinibaldi@iit.it


Supporting Information S1 – Model-based design ice-breaking 

 

2 
 

Therefore, formally speaking, we computed 

 

ℓ̂ = ℓ̂(𝜅; 𝜙, 𝐸, 𝜈, 𝜙𝑅 , 𝑑, 𝜖), (1) 

 

for selected values of 𝜅. Then, we targeted 𝜅𝑑𝑒𝑠 = (2𝜙)−1 as design curvature: we aimed at achieving a 

radius of curvature as low as twice the probe diameter during the deployment. This is very challenging; 

indeed, it is beyond the capabilities of relevant state-of-the-art systems [5-7]. Hence, we used the developed 

model for determining the design value of the probe span, as follows: 

 

ℓ ≅ ℓ̂((2𝜙)−1; 𝜙, 𝐸, 𝜈, 𝜙𝑅 , 𝑑, 𝜖). (2) 

 

In the sequel we detail the procedure that we used for obtaining ℓ̂ as in Eq. 1, and we show exemplificative 

results including those providing ℓ according to Eq. 2. 

Let us finally remark that the proposed model is not tied to a specific characteristic size of the probe: the 

working parameters can be varied in light of model objectives and constraints (the parameters set is a matter 

of design). Furthermore, let us anticipate that, as a byproduct of the model, we also obtained a reference 

value for the rod-clamping force to be achieved through the shape-lockers. This is briefly reported at the end 

of the present document. 

[Modeling approach and working assumptions] 

We addressed the following basic problem: how to build a circular track portion with curvature 𝜅 by 

deploying an idealized probe section like the one sketched in Figure 2. The section at hand bends in a plane 

that contains two of the six deployment rods, for simplicity, and its shape is defined starting from the 

centerline (dashed in the figure), namely a circular arc with curvature 𝜅 and length ℓ. (With minor abuse of 

notation, we use the same symbol for the centerline length and for the design value of the probe span.) 

In particular, the deployment rods are defined through circular arcs that subtend the same angle 𝜃 = 𝜅ℓ as 

the centerline. Moreover, the proximal/distal disks (introduced to lock the LCR shape) have negligible 

thickness and they are perpendicular to the centerline. Furthermore, we neglect the connecting wires because 

their contribution to the probe bending stiffness is negligible compared to the one of the rods (by 

construction), and therefore they are not relevant for the subsequent equilibrium problem. Finally, based on 

the relative position of the continuum robots (CRs) with respect to the bending plane, the shortest arc either 

belongs to the leader (LCR), as in Figure 2A, or to the follower (FCR), as in Figure 2B. The former 

configuration is labelled “FP” and the latter “UP”, for ease of presentation. 
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Figure 2. Schematic of an idealized probe section that builds a circular track portion. The probe features a span ℓ, 

while 𝜅 denotes the track curvature. The shortest circular arc either belongs (A) to the leader or (B) to the follower. 

Track building was addressed by a two-step simplified approach: we firstly determined the load-free pose of the leader 

(locked, green in the figure) that approximates the circular shape. We then applied the torque 𝑇 associated with the 

bended rods of the follower (unlocked, blue in the figure), and we studied the resulting deviations (linear 𝛿 and angular 

𝛿𝜃) from the circular shape. For a chosen 𝜅 we obtained the maximum ℓ that permits to approximate the circular shape 

within a chosen accuracy. Span determination was based on this approach, which holds when also reversing the roles of 

the CRs, by symmetry. (The B-subfigure is included in Figure 1D of the main text, for ease of presentation.) 

 

We tackled the track-building problem by a simplified approach, namely by studying two (static) 

equilibrium problems associated with the following deployment steps: 

 [Step#1: The unlocked LCR is firstly deployed so as to finally approach the pursued circular shape; 

then, its shape is locked. Upon successful completion of this step, the equilibrium configuration of the 

LCR suitably approximates the sought circular track.] We firstly determined the load-free equilibrium 

pose of the LCR, by minimizing the distance 𝛿 of the distal disk center from the endpoint of the 

pursued circular centerline, and the angular deviation 𝛿𝜃 from the angle 𝜃 that defines the pursued 

pose of the distal disk. We determined the LCR rod lengths as part of the solution (as for an inverse-

kinematics problem); 

 [Step#2: The unlocked FCR is then deployed over the locked LCR. Upon successful completion of this 

step (i.e. provided that the LCR section is stiff enough), the resulting probe section still suitably 

approximates the pursed circular track.] We then studied the equilibrium pose of the LCR (with the 

rod lengths determined at Step#1) by accounting for the contact with the FCR. Also in this case we 

minimized 𝛿 and 𝛿𝜃, and we regarded the resulting pose as a suitable approximation of the pursued 

track when 

 

max (
𝛿

𝜙
, 𝛿𝜃) ≤ 𝜖, (3) 

 

where 𝜖 denotes the aforementioned non-dimensional tolerance. 

In more detail, at Step#2 we assumed that each of the FCR rods only acted on the LCR through a bending 

torque T = T(κ) depending on the assumed curvature. This is consistent with the constant-curvature 

assumption of the rods (also for large displacements/deformations [8]), as far as the resulting equilibrium 

pose of the probe section is close enough to the pursued circular shape. In other words: 

 When the condition in Eq. 3 holds: the locked (and loaded) LCR section is reasonably close to the 

pursued circular shape; the FCR rods (as guided by the LCR) are correspondingly close to the 

associated circular arcs of the circular shape; the mechanical actions exchanged by LCR and FCR can 
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be reasonably described through pure bending torques, as discussed above. In this case, therefore, the 

model solution is physically-representative (for the statics at hand), and the considered section 

manages to build the track; 

 When the condition in Eq. 3 is violated, the considered section cannot be deployed so as to build the 

pursued track. In this case, the model solution at Step#2 does not accurately describe the actual statics, 

in particular because the FCR rods substantially differ from the assumed circular arcs, and therefore 

the mechanical actions exchanged by LCR and FCR are no longer described by pure bending torques. 

Indeed, the actual pose of the probe section must be determined by solving the coupled problem (LCR 

and FCR): the two-step approach is no longer suitable. However, we are not interested in static 

solutions that violate Eq. 3: we are only interested in determining the upper value of ℓ for which Eq. 3 

holds. Hence, the proposed two-step approach is commensurate with the model objectives, and can be 

effectively used for determining the probe span; 

Indeed, the main idea behind the proposed two-step approach is that deviations from the circular shape can 

be contained, provided that ℓ is low-enough. In fact, for any fixed values of 𝜅 the torque applied by the 

unlocked CR only depends on 𝜅 (as far as the rods are circular), yet the stiffness of the locked CR decreases 

when increasing ℓ. 

In general, one might get close to the circular shape at the end of Step#1, yet by approaching unstable 

configurations of the rods. In that condition, however, the subsequent loading at Step#2 most likely causes 

the loaded LCR to substantially depart from the sought track. Hence, the proposed modeling approach also 

detects unstable probe configurations, as exemplified by the results below. 

Furthermore, let us remark that, once determined the probe span as discussed above, the conditions for 

proper track-building are expected to be met at the subsequent deployment step as well, thanks to the 

symmetry between LCR and FCR in our interlaced concept. Indeed, when building the subsequent track 

portion, the (unlocked) LCR can properly catch up with the (locked) FCR over the previously-built track 

portion, by symmetry. Of course, we are simplifying the scenario; for instance, we are not considering the 

stability of the cumulatively-built track, which can be perturbed during the deployment. However, the way 

we address track-building by considering a single probe section should be noticed: it is intrinsically based on 

the symmetry underpinning the interlaced concept, according to which LCR and FCR essentially play 

identical roles to implement a truly alternating method [9]. 

Finally, we supposed the deployment rods to be elastic (we assumed the same elastic and cross-sectional 

properties for all the rods), and we described them as simple Cosserat rods to allow for large 

displacements/deformations [8]. Moreover, we exploited the momentum balance of the distal disk to couple 

the mechanical actions of the rods (and thus the CRs at Step#2). Furthermore, we used the pose of the disks 

(both the distal and the proximal one) to introduce proper boundary conditions at the rods endpoints (ideal 

clamping assumption, like in [10]). In addition, we neglected gravity, to simplify the derivation and because 

it is expected to play a minor role for many probe poses (simple estimates support this point, see e.g. [11]). 

Let us also remark that we deliberately introduced a small set of model parameters in order to contain the 

uncertainties, and to obtain results effectively usable for probe development. 
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[Model formulation and solution strategy] 

The shape of the i-th rod (𝑖 = 1,2,3; subscripts are hereafter understood) can be obtained by integrating 

the following ordinary differential equations [8]: 

 

𝑝𝑖
′ = 𝑅𝑖𝑣𝑖, (4) 

 

𝑅𝑖
′ = 𝑅𝑖(𝑢𝑖)∧, (5) 

 

𝑛𝑖
′ = 0, (6) 

 

𝑚𝑖
′ = 𝑛𝑖 × (𝑅𝑖𝑣𝑖), (7) 

 

to be complemented with proper boundary conditions. Symbols 𝑝𝑖 ∈ ℝ3 and 𝑅𝑖 ∈ 𝑆𝑂(3) respectively denote 

the rod position and material orientation, which provide a body (i.e. material-attached) frame for each value 

of the arc length 𝑠𝑖 ∈ [0, ℓ𝑖] (ℓ𝑖 is the rod length). Furthermore, 𝑛𝑖 ∈ ℝ3 and 𝑚𝑖 ∈ ℝ3 indicate the internal 

force and torque, respectively. Moreover, 𝑣𝑖 ∈ ℝ3 and 𝑢𝑖 ∈ ℝ3 denote kinematic variables, expressed in the 

body frame, respectively associated with the linear and the angular rate of change of the body frame itself. In 

particular, 𝑣𝑖 is related to extension/shear, while 𝑢𝑖 is related to bending/torsion. In addition, the prime 

operator represents differentiation with respect to the arc length, while (∙)∧ (hat operator) denotes the 

classical mapping from ℝ3 to 𝑠𝑜(3), which is the Lie algebra of 𝑆𝑂(3). Let us observe that we expressly 

neglect body forces and torques in the rod momentum balances (Eq. 6-7), consistently with the considered 

loading conditions. Furthermore, from Eq. 6 we immediately obtain that 𝑛𝑖 is constant along the i-th rod, so 

that we can omit the formal dependence on the corresponding arc length (besides neglecting Eq. 6 itself). 

Then, for an elastic rod the kinematic variables are linked to the internal force and torque by the following 

constitutive relations (that provide the closure for Eq. 4-7): 

 

𝑛𝑖 = 𝑅𝑖𝐾𝑠𝑒(𝑣𝑖 − 𝑣𝑖
∗), (8) 

 

𝑚𝑖 = 𝑅𝑖𝐾𝑏𝑡(𝑢𝑖 − 𝑢𝑖
∗), (9) 

 

where the starred quantities refer to the stress-free reference configuration of the rods. Moreover, 𝐾𝑠𝑒 =

𝑑𝑖𝑎𝑔(𝐴𝐺, 𝐴𝐺, 𝐴𝐸) and 𝐾𝑏𝑡 = 𝑑𝑖𝑎𝑔(𝐸𝐼, 𝐸𝐼, 𝐺𝐽) are stiffness matrices, where 𝐴, 𝐼 and 𝐽 respectively denote 

the area, the area moment of inertia and the polar moment of inertia of the cross-section, and 𝐺 =

𝐸/(2(1 + 𝜈)) is the shear modulus. For the sake of definiteness, let us introduce a Cartesian frame such that 

the initially straight LCR rods (load-free and stress-free) are aligned with the 𝑧 –axis (with the arc length 

increasing with 𝑧). Then, 𝑣𝑖
∗ = [0,0,1]𝑇 and 𝑢𝑖

∗ = [0,0,0]𝑇. 
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Let us now consider the LCR distal disk; its momentum balances read: 

 

∑ 𝑛𝑖
3
𝑖=1 = 0, (10) 

 

∑ (𝑝𝑖(ℓ𝑖) × 𝑛𝑖 + 𝑚𝑖(ℓ𝑖))3
𝑖=1 − 𝑚𝑓 = 0, (11) 

 

where 𝑚𝑓 denotes the torque due to contact with the FCR rods. Based on the two-step strategy introduced 

above, 𝑚𝑓 is null at Step#1, while it has a known expression at Step#2 (reported below). It should be noticed 

that Eq. 10-11 provide a set of boundary conditions for the rods, which couple the internal forces and torques 

at the endpoints (the reference point for the angular momentum being immaterial). 

Let us then consider the geometric boundary conditions for the rods. To the purpose, let 𝑟𝑖 denote the 

relative position of the i-th rod’s endpoint with respect to the center of a disk (either proximal or distal, being 

the same), as represented in the disk-attached frame. Moreover, let 𝑅𝑑𝑑 indicate the rotation of the distal 

disk, and 𝑝𝑑𝑑 the position of its center; furthermore, let 𝑅𝑝𝑑 and 𝑝𝑝𝑑 represent the corresponding quantities 

for the proximal disk. Then, the following compatibility conditions straightforwardly stem from the assumed 

perfect clamping: 

 

𝑝𝑝𝑑 + 𝑅𝑝𝑑  𝑟𝑖 − 𝑝𝑖(0) = 0, (12) 

 

(𝑙𝑜𝑔(𝑅𝑖
𝑇(0)  𝑅𝑝𝑑))

∨
= 0. (13) 

 

𝑝𝑑𝑑 + 𝑅𝑑𝑑  𝑟𝑖 − 𝑝𝑖(ℓ𝑖) = 0, (14) 

 

(𝑙𝑜𝑔(𝑅𝑖
𝑇(ℓ𝑖)  𝑅𝑑𝑑))

∨
= 0. (15) 

 

In particular, Eq. 13 and Eq. 15 state that the rod orientation at the corresponding endpoints is the same as 

the one of the disks (the matrix logarithm and the (∙)∨ operator, which is the inverse of (∙)∧, permit to use a 

compact notation, as e.g. in [10]).  

We are now in a position to simplify the formulation, by exploiting the assumed planar deformation of the 

idealized probe section. To the purpose, let us assume that each rod deforms on a plane parallel to the 𝑥𝑧 –

plane. Moreover, two of the three rods, say the ones with subscript 2 and 3, undergo the same deformation, 

thanks to the symmetry with respect to the 𝑦 = 0 bending plane. Hence: 

 We only solved Eq. 4 for the components 𝑥𝑖 and 𝑧𝑖, with 𝑖 = 1,2 (four equations). Moreover, we recast 

Eq. 5 in terms of a rotation angle 𝛼𝑖 around the 𝑦 -axis (two equations). Furthermore, given the 

internal force components 𝑛𝑥1 and 𝑛𝑧1 in rod#1, Eq. 10 immediately provides 𝑛𝑥2 = 𝑛𝑥3 = −𝑛𝑥1/2 

and 𝑛𝑧2 = 𝑛𝑧3 = −𝑛𝑧1/2. Hence, we treated 𝑛𝑥1 and 𝑛𝑧1 as two unknown constants, tentatively 

assigned to integrate the differential problem yet to be determined as part of the solution process. In 

addition, Eq. 7 only provides a non-null component along the 𝑦 –axis, so that we considered 𝑚𝑦𝑖 (two 

equations); similarly, also 𝑚𝑓 appeared through the 𝑦 –component only. Moreover, we consistently 

considered the relevant components of the closure relations, i.e. Eq. 8-9; 
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 As regards the proximal boundary conditions, we directly imposed the ones regarding 𝑥𝑖, 𝑧𝑖 and 𝛼𝑖 

(six values), as provided by Eq. 12-13. Moreover, we treated the proximal values of 𝑚𝑦, say 𝑚𝑦1
0  and 

𝑚𝑦2
0  as two additional unknown constants, tentatively assigned to integrate the differential problem yet 

to be determined as part of the solution process; 

 At the distal end, based on Eq. 11 and Eq. 14-15, we defined the following residuals (let us omit the 

arc length specification for conciseness): 

 

𝜌𝑚 ≡ 𝑚1 + 2 𝑚2 + 𝑛𝑥1(𝑧1 − 𝑧2) + 𝑛𝑧1(𝑥2 − 𝑥1) − 𝑚𝑓 , (16) 

 

𝜌𝑥𝑖 ≡ 𝑥𝑑𝑑 + [𝑅𝑑𝑑  𝑟𝑖]𝑥 − 𝑥𝑖, (17) 

 

𝜌𝑧𝑖 ≡ 𝑧𝑑𝑑 + [𝑅𝑑𝑑  𝑟𝑖]𝑧 − 𝑧𝑖, (18) 

 

𝜌𝛼𝑖 ≡ 𝛼𝑑𝑑 − 𝛼𝑖, (19) 

 

to be minimized as part of the solution process (see below). The symbols [∙]𝑥 and [∙]𝑧 in Eq. 17-18 

denote the projection on the corresponding coordinate axis, while 𝑥𝑑𝑑, 𝑧𝑑𝑑 and 𝛼𝑑𝑑 clearly represent 

the position and the orientation of the distal disk. For convenience, however, we defined the latter 

quantities with reference to the pursued circular shape (see Figure 2). In particular, once introduced 

the coordinates (𝑥𝑐𝑙, 𝑧𝑐𝑙) of the distal endpoint of the centerline, and by recalling the angle 𝜃, we 

introduced the following deviations: 

 

𝛿𝑥 ≡ 𝑥𝑑𝑑 − 𝑥𝑐𝑙 , (20) 

 

𝛿𝑧 ≡ 𝑧𝑑𝑑 − 𝑧𝑐𝑙  , (21) 

 

𝛿𝜃 ≡ 𝛼𝑑𝑑 − 𝜃 , (22) 

 

to be determined through the minimization process (see below). The expressions of 𝑥𝑐𝑙 and 𝑧𝑐𝑙 in 

terms of ℓ and 𝜅 can be easily derived (see e.g. [12]); they are omitted for brevity. 
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In light of the above formulation, let us finally detail the solution strategy: 

 [Step#1] We determined the LCR equilibrium pose by minimizing the seven residuals defined in 

Eq. 16-19; in particular, we chose their sum as cost function. To the purpose, we selected the 

following seven optimization variables: 𝑛𝑥1, 𝑛𝑧1, 𝑚𝑦1
0 , 𝑚𝑦2

0 , ℓ1, ℓ2 and 𝛿𝜃; 

 [Step#2] We performed the same minimization as for Step#1, yet with the following optimization 

variables: 𝑛𝑥1, 𝑛𝑧1, 𝑚𝑦1
0 , 𝑚𝑦2

0 , 𝛿𝑥, 𝛿𝑧 and 𝛿𝜃 (in particular, we adopted the rod lengths obtained at the 

previous step). 

In more detail: 

 We did not allow for linear deviations of distal disk position at Step#1 in order to approach the sought 

circular shape as closely as possible (i.e. consistently with the fixed model parameters). Conversely, at 

Step#2 we expressly introduced 𝛿𝑥 and 𝛿𝑧, not to introduce unphysical constraints on the solution. 

Indeed, from Step#2 we obtained the values of 𝛿𝜃 and 𝛿 ≡ (𝛿𝑥
2 + 𝛿𝑧

2)1/2 necessary for assessing 

track-building capabilities according to Eq. 3; 

 At Step#2 we assumed 𝑚𝑓 to be given by the following expression [8]: 

 

𝑚𝑓 ≡ 𝐸𝐼 𝜃 ∑ 𝜆𝑗
−13

𝑗=1  , (23) 

 

where 𝜆𝑗 is the length of the j-th FCR rod (𝑗 = 1,2,3) in the assumed circular shape (see Figure 2), so 

that 𝜃𝜆𝑗
−1 represents its curvature. For brevity, we omit the expression of 𝜆𝑗 (it can be easily obtained, 

see e.g. [12]), as well as the simplification of Eq. 23 enabled by symmetry; 

 Once recast the problem in non-dimensional form, we numerically integrated the Cosserat differential 

equations in order to evaluate the cost function. To the purpose, we exploited a classical Dormand–

Prince scheme available in Matlab (The Mathworks, Natick, MA, USA), with a tight relative tolerance 

(10−8). Cost minimization was performed through Matlab as well, in particular by exploiting a quasi–

Newton method (we assumed the optimization landscape to be locally smooth); 

 For any fixed values of 𝜅 we solved a sequence of equilibrium problems, by increasing the centerline 

length. This way, we could exploit a previously obtained solution to guess the subsequent one (both at 

Step#1 and Step#2), with clear benefits on convergence and computational cost. This strategy also 

benefited from the fact that we formulated some of the residuals in terms of variations: as far as the 

probe achieves track-building, the deviations from the circular shape are small and the algorithm can 

easily converge by initially assuming null deviations. In addition, we could easily detect unstable rod 

configurations: stable configuration were incrementally explored up to e.g. a bifurcation (after which 

the solution was no longer of interest, as discussed above); 

 In summary, once fixed 𝜅, we obtained 𝛿𝜃 and 𝛿 for increasing values of the centerline length, and we 

determined the limit value ℓ̂(𝜅) based on the condition in Eq. 3. Finally, we obtained the design value 

for the probe span by specifically considering 𝜅𝑑𝑒𝑠 = (2𝜙)−1, i.e. by picking ℓ̂((2𝜙)−1). 
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[Model results] 

Exemplificative results obtained through the proposed modeling strategy are reported in Figure 3 and 

Figure 4. 

 

 

Figure 3. Equilibrium configuration of the idealized probe section, for 𝜿𝝓 = 𝟏/𝟑 and 𝓵/𝝓 = 𝟐. 𝟓. (A) LCR with 

the FP rod configuration. (B) LCR with the UP rod configuration. Each subfigure features two views (left and right) of 

the equilibrium pose, and a detail (middle) of the distal disk. The pursued circular track is also sketched (dashed curves 

denoting the arcs, the centerline and the distal disk); the FCR rods are not shown for ease of representation. Mechanical 

instability prevents the probe section in (B) from accurately building the pursued track. 

 

In particular, in Figure 3 the FP configuration permits to approximate the pursued circular shape, while 

the UP configuration exhibits rod instabilities and substantially departs from the sought circular track. This is 

consistent with physical intuition: it is more challenging to achieve a chosen curvature by only pushing with 

one rod (instead of two). Indeed, we introduced the labels FP and UP to remind of favorable and unfavorable 

pushing, respectively, for the LCR rods. Yet the careful reader will spot that the strong symmetry underlying 

our interlaced probe concept should not introduce any bias that favors one rod configuration with respect to 

the other. And this is indeed the case, since at each deployment move the FP configuration of the LCR 
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corresponds to the UP configuration of the FCR, and vice-versa. Therefore, from Figure 3 we obtain a 

unique information: we conclude that the span ℓ = 2.5 𝜙 is too long for accurately building a track with 

radius of curvature equal to 3𝜙. 

Figure 4 then exemplifies the instability faced when crossing the ℓ̂ threshold, in particular for 𝜅𝜙 = 1/2 

(and by considering the UP rod configuration). In more detail, Figure 4 shows that accurate track-building 

can be achieved by choosing ℓ = 𝜙, while ℓ = 2𝜙 leads to instability. 

 

 

Figure 4. Equilibrium configuration of the idealized probe section, for 𝜿𝝓 = 𝟏/𝟐. The UP rod configuration is 

considered for the LCR, with (A) ℓ = 𝜙 and (B) ℓ = 2𝜙. Each subfigure features two views (left and right) of the 

equilibrium pose, and a detail (middle) of the distal disk. The pursued circular track is also sketched (dashed curves 

denoting the arcs, the centerline and the distal disk); the FCR rods are not shown for ease of representation. Mechanical 

instability prevents the probe section in (B) from accurately building the pursued track. 
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Moreover, Figure 5 shows the trend of the computed deviations, namely 𝛿/𝜙 and 𝛿𝜃, versus ℓ/𝜙, for 

selected values of the curvature. In particular, we considered 𝜅𝜙 = 1/5, in light of the deployment 

capabilities stated in [5], as well as the target value 𝜅𝜙 = 1/2, to outperform the state of the art. For 

completeness, we report the trends for both the UP and the FP configuration, the former systematically being 

the limiting one, as expected. Moreover, we cut the y-axis in the figure in correspondence of the chosen 

tolerance, namely 𝜖 = 5 %, to enhance readability. Based on the results in Figure 5, by choosing a probe 

span ℓ/𝜙 ≅ 1.5 we should be able to achieve the sought performance, i.e. building a track with a radius of 

curvature as low as twice the probe diameter. This is the main result of the proposed model: we then 

addressed the detailed design of the probe by adopting ℓ/ 𝜙 = 1.5. 

 

 

Figure 5. Deviation of the probe section pose (from the pursued circular track) versus 𝓵, for selected values of 𝜿. 

(A) Angular deviation 𝛿𝜃. (B) Non-dimensional linear deviation 𝛿/𝜙. Both the FP and the UP rod configurations are 

considered, for completeness. The 𝜅𝜙 = 1/2 curve is the one we targeted for the determination of the probe span. 

Based on these results, ℓ = 1.5 𝜙 should permit to achieve the pursued track-building performance, within the chosen 

tolerance 𝜖 = 5 %. (The trends associated with the UP configuration are reported in Figure 1D of the main text, for ease 

of presentation.) 

 

Let us observe that in Figure 5 we also show the trends associated with 𝜅𝜙 = 1, just for reference. 

Indeed, this very high curvature might be achieved e.g. by miniaturized flexible tool tips [13], whereas it is 

extremely challenging for deployable probes. We did not address this very high curvature at the early 

developmental stage, because practical implementation constraints (primarily those associated with the non-

negligible thickness of the shape-lockers) were likely to hamper the effective achievement of the sought 

performance. Let us also mention that the computational cost of the curves in Figure 5 was very contained: 

for any fixed 𝜅 and ℓ, it took a few seconds to order of a minute to compute the deviations (elapsed time, on 

a common desktop PC). Furthermore, those trends in Figure 5 that are associated with the UP configuration 

are also reported in the main text (Figure 1D), for ease of presentation. 
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Let us finally remark that, as a byproduct of the developed model, we also obtained a reference value for 

the rod-clamping force to be achieved through the shape-lockers. In more detail, we firstly computed the 

maximum tangential force 𝑓𝑡𝑔 (absolute value) occurring at the endpoints of the LCR rods. For the chosen 

conditions (𝜅𝜙 = 1/2, ℓ/ 𝜙 = 1.5) we obtained 𝑓𝑡𝑔 ≅ 5 N. We then introduced the following inequalities 

(the approximation symbol reminds that we are dealing with simple estimates):  

 

𝜇𝑠 𝑓𝑐 ≳ 𝑓𝑡𝑔, (24) 

 

3 𝜇𝑠 𝑓𝑐 ≳ 2 𝑓𝑡𝑔, (25) 

 

where  𝑓𝑐 denotes the clamping force (absolute value) on a deployment rod, and 𝜇𝑠 indicates the static 

friction coefficient between the rod and the clamping interface on the shape-locker. In more detail, the 

condition in Eq. 24 applies to the rod specifically subjected to the extremal value 𝑓𝑡𝑔, and it is clearly more 

stringent than the condition provided by Eq. 25. Differently, the latter condition can be introduced by 

considering the three rods at once, namely by adding their static friction inequalities (and by assuming that 

the tangential forces on the two rods that are less loaded sum to 𝑓𝑡𝑔, consistently with the equilibrium 

conditions for the distal disk introduced above). By considering, for instance, a clamping interface made of 

aluminum, so that 𝜇𝑠 ≈ 0.45 [14-16], one obtains 𝑓𝑐 ≳ 11.1 N from Eq. 24 and 𝑓𝑐 ≳ 7.4 N from Eq. 25. 

Consequently, one should address the detailed design of the shape-lockers by targeting a clamping force 

around 10 N. We actually considered this reference value since we chose aluminum for the clamping 

interface, as detailed in the main text. 
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