
Numerical Methods and Classification Criteria

Numerical solutions to Equations (5)–(6) were generated for N = 20, 000 total
time steps of size ∆t = 0.1 in a forward Euler solver using MATLAB’s del2

discretized approximation of the Laplacian. The simulation domain was taken
to be a [0, 2] × [0, 2] Cartesian grid with 256 spatial sites per axis, in line with
other numerical studies of the system [1, 2, 3]. Spot checks confirmed that these
simulations were well resolved spatially and of sufficient duration to allow the
system’s dynamics to fully develop. Simulations were run using both Neumann
(no flux) and periodic boundary conditions: the results were robust to the choice
of boundary condition.

The line source was considered because spirals are known to form around
the free end of linear fronts in similar systems [4, 5]. The center of rotation
of spirals is not generally fixed, meaning that the dynamics can potentially
wander off the finite simulation domain. To pin the center of the spiral and
prevent such wandering, we artificially held resource concentrations to be zero
in a disk of radius 0.01 centered at (x, y) = (1, 1) [6, 7]. Fungal biomass was
introduced at a high concentration (0.9, a high enough value to ensure the initial
colony survived) in a narrow rectangular domain, [0, 1] × [1, 1.0156], with one
vertex lying within the zero-resource region. Resources were set to zero just
below the line of high biomass, namely in the region [0, 1] × [0.922, 1], so as
to bias the rotation of the spiral clockwise. In all other regions, the initial
resource concentration was set to its maximum value, and fungal biomass to
zero. To prevent front-interaction from occurring, we only used no flux boundary
conditions in these simulations.

The multiple-point initial conditions create a situation where the only mech-
anism for spiral formation lies in the interaction of propagating fronts. Fungal
biomass was set to 0.9 in a circle of radius of 1 × 10−4 dimensionless length
units centered on five randomly selected locations. The remainder of the domain
was initialized with zero fungal biomass and maximum resource concentrations.
Symmetry prevents spiral formation from occurring at the isolated innoculation
sites, meaning that any observed spirals must form due to front-interaction.
Spot checks throughout the simulations confirmed that these interactions oc-
curred and generated spirals.

The limiting values of replenishment and mortality at which spirals were
formed for both sets of initial conditions were determined through ad hoc nu-
merical experimentation. These extrema provided bounds on the exploration
of parameter space. Both g and m were linearly varied between these bounds,
and time domain simulations run for each factorial combination of the param-
eters. Both parameters were treated as spatially homogeneous and temporally
constant throughout the simulation domain.

The tested parameter combinations were classified as supporting spiral/rotor
formation only if spirals/rotors were found in the long term biomass dynamics.
Transient spiral dyanmics that lead to a steady-state static biomass pattern
were considered negative results. Similarly, parameter combinations were only
considered to support fairy rings formation if (i) isolated rings were sustained
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and propagated in the long term, or (ii) multiple rings disappeared through
mutual annihilation with other fronts. Note that we only mark the existence
of spirals at a particular point in time. Analyzing the stability of spiral waves
in isolation is difficult [8] and analyzing the stability of spiral waves that are
interacting with other fungal fronts is not mathematically feasible. We therefore
assume that if spirals and/or rotors have persisted until the end of a simulation,
then these dynamics represent long-term, non-transient behaviors of the system.
Cases in which rings propagated a short distance and then decayed to the ground
state before the end of the simulation were treated as negative results.
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