1 VB Laplace approximation code

The VB Laplace approximation function and its usage is briefly explained below.

1.1 Function Call in R

The function call used to perform an analysis is as follows:

```
vb_model2_la(
formula, design_mats, alpha_0, beta_0, Sigma_alpha_0, Sigma_beta_0,
LargeSample = FALSE, epsilon = 1e-05)
```


1.2 Named Arguments

The arguments of the function are as follows

- formula - Double right-hand side formula describing covariates of detection and occupancy in that order. e.g. Assume that the presence absence data is named y; the detection covariates is contained in a named list W (see below) and the occupancy covariates is stored X. Further suppose that the named lists are named $\mathrm{W} 1, \mathrm{~W} 2, \mathrm{~W} 3$ and X 1 and X 2 respectively. $\mathrm{y} \sim \mathrm{W} 1$ $+\mathrm{W} 2+\mathrm{W} 3 \sim \mathrm{X} 1+\mathrm{X} 2$ would be one example of a suitable formula call. The function does not allow one to fit a model that only contains intercepts at the moment. This option will be included in future.
- design_mats - A named list generated by the call vb_Designs(W, X, y).
W is a named list of data frames of covariates that vary within sites. i.e. The data frames are of dimension $n \times J$ where each row is associated with a site and each column represents a site visit.
e.g. Suppose W contained three data frames $\mathrm{W} 1, \mathrm{~W} 2$ and $\mathrm{W} 3 ; \mathrm{W} \$ \mathrm{~W} 1[1]=$, the covariate values for site 1 for all of the visits. Note that some of the entries might be ' NA ' meaning that no visit took place at those occasions.
X is a named data frame that varies at site level.
y is an $n \times J$ matrix of the detection, non-detection data, where n is the number of sites, J is the maximum number of sampling periods per site.

NOTE: THE FUNCTION DOES NOT ALLOW THERE TO BE ANY MISSING VALUES IN THE COVARIATE MATRICES IF A SURVEY WAS UNDERTAKEN AT A PARTICULAR LOCATION!!!

- alpha_0 - Prior mean of the detection covariate coefficients. It is assumed that the detection covariate coefficients have the following prior distribution $\boldsymbol{\alpha} \sim N$ (alpha_0, Sigma_alpha_0). Here $\boldsymbol{\alpha}$ is viewed as a vector.
- beta_0 - Prior mean of the occurrence covariate coefficients. It is assumed that the occupancy covariate coefficients have the following prior distribution $\beta \sim N$ (beta_0, Sigma_beta_0). Here β is viewed as a vector.
- Sigma_alpha_0 - Prior covariance matrix of the detection covariate coefficients.
- Sigma_beta_0 - Prior covariance matrix of the occurrence covariate coefficients.
- LargeSample - LargeSample==TRUE - indicates that the number of sites is 'large' and that an approximation to $B\left(\mu, \sigma^{2}\right)$ is used instead of integrations (otherwise numerical integrations are performed).
- epsilon - Convergence measured relative to this quantity.

1.3 The values outputted by the function

- alpha - The VB estimate of the posterior mean vector of $\boldsymbol{\alpha}$. ($s \times 1$ vector)
- beta - The VB estimate of the posterior mean vector of β. ($r \times 1$ vector $)$
- Sigma_alpha - The VB estimate of the posterior covariance matrix of the α vector. $(s \times s$ matrix)
- Sigma_beta - The VB estimate of the posterior covariance matrix of the $\boldsymbol{\beta}$ vector. ($r \times r$ matrix)
- occup_p - The VB estimate of the posterior occupancy probabilities at the sites considered. ($n \times 1$ vector)
- Log_mla - The lower bound of the log marginal log likelihood.
- Breakcounter - Breakcounter $==1$ if the number of iterations to perform the calculations are large. At the moment 'large' is viewed as 2000 iterations.

2 A small simulated data set

The following R code could be used to produce a small simulated data set that could be used to undertake the VB Laplace approximations.

```
#A simple example of how to construct y, X and W; the
#detection/nondetection data, site covariates and observation covariates
#----------------------------------------------------------------------------
require(MASS)
set.seed(1000)
beta.param = c(-1.85, 1.5, -0.5)
```

```
n = 5
```

```
#create 2 site covariates used to model occupancy
x1 = runif(n, -2,2)
x1 = (x1 - mean(x1)) / sd(x1)
x2 = runif(n, -5,5)
x2 = (x2 - mean(x2)) / sd(x2)
X = cbind(rep(1,n), x1, x2)
psi = as.vector(1/(1+exp(-X %*% beta.param))) ##logistic link function used
z = rbinom(n, size=1, prob=psi)
J = 3 #the maximum number of surveys (some sites might have fewer visits)
#three observation covariates used to model the detection probs
alpha.param = c(-1.35, 1.0, 0.5, -. 25)
w1 = runif(n*J, -5,5)
w1 = (w1 - mean(w1)) / sd(w1)
w2 = runif(n*J, -1,1)
w2 = (w2 - mean(w2)) / sd(w2)
w3 = runif(n*J, 0,5)
w3 = (w3 - mean(w3)) / sd(w3)
W = array(dim=c(n, J,4))
W[,,1] = 1
W[,,2] = W1
W[,,3] = w2
W[,,4] = w3
p = matrix(nrow=n, ncol=J)
y = matrix(nrow=n, ncol=J)
for (j in 1:J)
{
p[, j] = c(1/(1+exp(-W[,j,] %*% alpha.param)))
y[, j] = rbinom(n, size=1, prob=z*p[, j])
}
#-
```

\#Now lets simulate the number of visits to each of the sites \#i.e. we need to set some of the y and W entries equal to \#NA

```
nvisits<-sample(1:J, n, replace=T)
empty.sites<-which(nvisits!= J)
for (i in 1:length(empty.sites))
{
#adds NA to sites with visits less than J
y[ empty.sites[i], (nvisits[empty.sites[i]]+1):J ] <- NA
#adds NA to W entries with visits less than J
W[ empty.sites[i], (nvisits[empty.sites[i]]+1):J, ] <- NA
}
#Note W[i,,] are the covariate values for site i
#each row is for a specific visit
#---------------------------------------------------------------------
#An nxJ matrix of the observed measured data,
#where n is the number of sites and J is the
#maximum number of observations per site.
Y.eg<-y
#-
```


\#siteCovs

```
\#A data.frame of covariates that vary at the site level. \#This should have n rows and one column per covariate X.eg=as.data.frame(cbind (x1, x2))
```

\qquad

```
\#obsCovs
\#the obsCovs matrix is constructed as per the 'unmarked' package \#i.e. W.eg.l1 is a named list of data.frames of covariates that \#vary within sites.
\#i.e. The dataframes are of dimension \(n\) by J
\#where each row is associated with a site
\#and each column represents a site visit.
\#e.g. W.eg.l1\$W1[1, ] = the covariate values for site 1 for all of the \#visits. Note that some of the entries might be 'NA' \#meaning that no visit took place at those occasions.
```

```
W1=matrix(NA,nrow=n, ncol=J)
W2=matrix(NA, nrow=n, ncol=J)
W3=matrix(NA, nrow=n, ncol=J)
for (i in 1:n)
{
W1[i,]<- W[i,,2]
W2[i,]<- W[i,,3]
W3[i,]<- W[i,,4]
}
#colnames(W1)<-paste("W1.",1:J, sep="")
#colnames(W2)<-paste("W2.",1:J, sep="")
#colnames(W3)<-paste("W3.",1:J, sep="")
W.eg.l1<-list(W1=W1, W2=W2, W3=W3)
W.eg.l1
#-
#An alternate way of 'viewing' the site covariates is as follows:
#Create a list element; one for each site, where the data
#for each site have been stacked one below the other either as
#a dataframe or as a matrix. e.g.
#W.eg.ls[[2]] is the data for site 2.
W.eg.12=list(list())
for (i in 1:n)
{
if (nvisits[i]!=1)
{
dframe<-as.data.frame(W[i,1:nvisits[i],][,-1])
}else
{
dframe<-as.data.frame(matrix(W[i,1:nvisits[i],][-1],nrow=1))
}
names(dframe)<-c("w1", "w2", "w3")
W.eg.12[[i]]<-dframe
}
```

```
#Two different ways of representing the observation covariates
W.eg.l1
W.eg.12
#-
#If the site covariates are provided as per W.eg.l1
#then we can construct W.eg as follows
#(here W.eg is the way in which 'vb_model2_la')
#creates the site covariate matrix W)
#We assume that all sites are visited at lest once
#although all might not be visited J times
#We further assume that there are no missing covariate
#values for those occasions sites are visited
W.temp<-NULL
n<-length(W.eg.l1)
for (i in 1:n)
{
W.temp<-cbind(W.temp, W.eg.l1[[i]])
}
W.temp
nvisits<-apply(W.eg.l1[[1]],1,function(x){length(na.omit(x))})
nvisits
W.eg<-NULL
for (i in 1:n)
{
W.eg<-rbind(W.eg, matrix( c(na.omit(W.temp[i,])), nrow=nvisits[i]) )
}
W.eg
#-----------------------------------------------------------------------
```

\#If the site covariates are provided as per W.eg. 12
\#then we can construct W.eg as follows
W.eg<-NULL

```
n <-length(W.eg.12)
for (i in 1:n)
{
W.eg<- rbind(W.eg, W.eg.l2[[i]])
}
W.eg
#-------------------------------------------------------------------------
SimData<-list(y=Y.eg, X=X.eg, W.eg.l1=W.eg.l1, W.eg.l2=W.eg.l2, W_vb=W.eg)
```

The simulated data is stored in a list named SimData and it's contents are displayed below.
> SimData
\$y

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	0	NA	NA
$[2]$,	0	1	0
$[3]$,	0	NA	NA
$[4]$,	0	1	0
$[5]$,	0	0	NA

\$X

	x 1	x 2
1	-0.5802233	-1.0949354
2	1.0468539	1.3166989
3	-1.3879419	0.7589495
4	0.7897816	-0.5628716
5	0.1315297	-0.4178415

\$W.eg. 11
\$W.eg.l1\$W1
[,1]
[,2]
[,3]
[1,] -1.1475341 NA NA
$\begin{array}{llll}{[2,]} & 0.3516124 & 1.4671572 & 0.2061681\end{array}$
[3,] 0.8607333 NA NA
[4,] -1. $1047705-1.1515037-1.0836617$
$\left[\begin{array}{llll}{[5,]} & 0.6777174 & 0.5505103 & \mathrm{NA}\end{array}\right.$
\$W.eg.l1\$W2

	[,1]	[,2]	[,3]
[1,]	0.08380091	NA	A NA
[2,]	-1.61591051	-1.7122869	-0.0359153
[3,]	0.06444337	NA	A NA
[4,]	1.39241296	0.1392068	- 0.2994426
[5,]	-0.10518068	-0.7375655	5 NA
\$W.eg.11\$W3			
	[,1]	[,2]	[,3]
[1,]	0.6508060	NA	NA
[2,]	0.6021102	0.5024673	0.6489031
[3,]	-0.0692492	NA	NA
[4,]	-1.5268438	-0.2837397	1.4945716
[5,]	-0.3372867	0.2584308	NA

\$W.eg. 12
\$W.eg.12[[1]]
w1 w2 w3
1 -1. 1475340.083800910 .650806
\$W.eg.12[[2]]
w1 w2 w3
$10.3516124-1.61591050 .6021102$
$21.4671572-1.71228690 .5024673$
$30.2061681-0.03591530 .6489031$
\$W.eg.12[[3]]
w1 w2 w3
$10.86073330 .06444337-0.0692492$
\$W.eg.12[[4]]
w1 w2 w3
1 -1. $1047711.3924130-1.5268438$
$2-1.1515040 .1392068-0.2837397$
$3-1.0836620 .2994426 \quad 1.4945716$
\$W.eg.12[[5]]

	W1	W2	W3
1	0.6777174	-0.1051807	-0.3372867
2	0.5505103	-0.7375655	0.2584308
\$W_vb			
	w1	w2	w3
1	-1.1475341	0.08380091	0.6508060
2	0.3516124	-1.61591051	0.6021102
3	1.4671572	-1.71228685	0.5024673
4	0.2061681	-0.03591530	0.6489031
5	0.8607333	0.06444337	-0.0692492
6	-1.1047705	1.39241296	-1.5268438
7	-1.1515037	0.13920676	-0.2837397
8	-1.0836617	0.29944258	1.4945716
9	0.6777174	-0.10518068	-0.3372867
10	0.5505103	-0.73756554	0.2584308

3 A small example

The following R code could be used as an example of how to use the VB code in order to undertake a small analysis.

```
## Load the data into your workspace
```

\#\#-
\#This data set is stored as a supplementary information document
\#First download the file and then save it into your working directory
\#before running the rest of the script
load("S2_Data.rda")
\#Set Uninformative priors
\#---------------------------
\#Coefficients in the detection model
alpha_0 <- matrix(0, ncol=1, nrow=4)
\#Covariance matrix of the coefficients in the detection model

```
Sigma_alpha_0 <- diag(4)*1000
#Coefficients in the occupancy process
beta_0 <- matrix(0, ncol=1, nrow=3)
#Covariance matrix of the coefficients in the occupancy model
Sigma_beta_0 <- diag(3)*1000
#Construct the required matrices using vb_Designs
#---------------------------------------------------
#Ensure that the function 'vb_Designs' is stored in the workspace
#The function is included here if this was not done
vb_Designs<-function(W, X, y)
{
    #create the required 'response' and 'regressor matrices'
    #using all of the X and W data
    #the output is stored as a named list
    #create the Y matrix that will be used
    Y<-matrix(na.omit(matrix(t(y), ncol=1)))
    pres_abs <- apply(y,1,max,na.rm=T) #check if this will work for NA's
    #create the W matrix
    W.temp<-NULL
    nv<-length(W)
    for (i in 1:nv){W.temp<-cbind(W.temp, W[[i]])}
    nvisits<-apply(W[[1]],1,function(x){length(na.omit(x))})
    n<-length(nvisits)
    W.out<-NULL
    for (i in 1:n)
    {
        W.out<-rbind(W.out, matrix( c(na.omit(W.temp[i,])), nrow=nvisits[i]) )
    }
    colnames(W.out)<-names(W)
    list(Y=as.data.frame(Y), X=as.data.frame(X), W=as.data.frame(W.out),
            Names=c( colnames(X), colnames(W.out)), nvisits=nvisits,
```

```
    pres_abs=pres_abs)
}
design_mats<-vb_Designs(W=SimData2$W.eg.l1, X=SimData2$X, y=SimData2$y)
#Here we use the large sample approximation and run the VB algorithm
#-
#Assume that the formula used will be of the following form:
#formula1<- y ~X1+X2~W1+W2+W3
#The occupancy model uses 2 covariates, X1 and X2; while
#the detection model uses 3 covariates W1, W2 and W3
#Intercepts are included in both models
#The function does not allow one to repress the intercept term
#ensure that the 'vb_model2_la' function is in the workspace
vb_fit<-vb_model2_la(y~}\textrm{X}1+\textrm{X}\mp@subsup{2}{}{~}\textrm{W}1+W2+W3, design_mats=design_mats
alpha_0=alpha_0, beta_0=beta_0,
Sigma_alpha_0=Sigma_alpha_0, Sigma_beta_0=Sigma_beta_0,
LargeSample=TRUE, epsilon=1e-5)
#The detection model parameters
vb_fit$alpha
#The occupancy model parameters
vb_fit$beta
#The respective covariance matrices
vb_fit$Sigma_alpha
vb_fit$Sigma_beta
#The approximate conditional ocupancy probabilities
plot(vb_fit$occup_p, ylab="Occupancy prob", xlab="Site number")
```

