S1 Friendship Paradox

The friendship paradox says that the average degree of neighbors of a node of degree k is larger than $k[1$. We demonstrate that the paradox holds globally by showing that average neighbor degree $\langle k\rangle_{q}$ is larger than average node degree $\langle k\rangle$:

$$
\langle k\rangle_{q}-\langle k\rangle=\sum_{k} \frac{k^{2} p(k)}{\langle k\rangle}-\langle k\rangle=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle^{2}}{\langle k\rangle}=\frac{\sigma_{k}^{2}}{\langle k\rangle},
$$

Here σ_{k} is the standard deviation of the degree distribution $p(k)$. Since $\sigma_{k} \geq 0$, $\langle k\rangle_{q}-\langle k\rangle \geq 0$. This confirms that the friendship paradox has its origins in the heterogeneous degree distribution, and is more pronounced in networks with larger degree heterogeneity σ_{k}.

Heterogeneous degree distribution also contributes to nodes perceiving that their neighbors have more of some attribute than they themselves have - what is referred to as the generalized friendship paradox [2]. Let's consider again a network where nodes have a binary attribute x. For convenience, we will refer to nodes with the attribute value $x=1$ as active, and those with $x=0$ as inactive. The probability that a random node is active is $P(x=1)=\sum_{k} P(x=1 \mid k) p(k)$. The probability that a random neighbor is active is $Q(x=1)=\sum_{k} P(x=1 \mid k) q(k)$. Using Bayes' rule, this can be rewritten as

$$
\begin{aligned}
Q(x=1) & =\sum_{k} \frac{P(x=1, k)}{p(k)} \frac{k p(k)}{\langle k\rangle}=\sum_{k} \frac{P(x=1, k)}{P(x=1)} \frac{k P(x=1)}{\langle k\rangle} \\
& =\frac{P(x=1)}{\langle k\rangle} \sum_{k} k P(k \mid x=1)=P(x=1) \frac{\langle k\rangle_{x=1}}{\langle k\rangle}
\end{aligned}
$$

where $\langle k\rangle_{x=1}$ is the average degree of active nodes. This quantity and the average degree $\langle k\rangle$ are related via the correlation coefficient $\rho_{k x}=\frac{P(x=1)}{\sigma_{x} \sigma_{k}}\left[\langle k\rangle_{x=1}-\langle k\rangle\right]$ (Eq. ??). Hence, the strength of the generalized friendship paradox is

$$
Q(x=1)-P(x=1)=\rho_{k x} \frac{\sigma_{x} \sigma_{k}}{\langle k\rangle},
$$

which is positive when node degree and attribute are positively correlated ($\rho_{k x}>0$) and increases with this correlation [2].

References

1. Feld SL. Why Your Friends Have More Friends Than You Do. American Journal of Sociology. 1991 May;96(6):1464-1477.
2. Eom YH, Jo HH. Generalized friendship paradox in complex networks: The case of scientific collaboration. Scientific Reports. 2014 Apr;4.
