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Figure A. Non-contact-mode AFM topographic mapping of the 6-amino-1-hexanethiol SAM-
modified gold surface without immobilized protein. The corresponding height profile of the 
area, as indicated by the dashed vertical line, is shown in the manuscript in Figure 1D.  
 
The enzyme coverage was estimated by evaluating AFM images of several independently 
prepared samples and at least three different spots on each sample. The amount of Re MBH 
units was counted via the respective periodicity derived from the height profiles as indicated 
in Figure 1D for all recorded AFM images and was averaged subsequently. 
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1.3. Electrochemical desorption of the amino-1-hexanethiol SAM 
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Figure C. Reductive desorption of the amino-1-hexanethiol SAM. The chemically modified 
Au electrode was subjected to an AC voltammetric sweep from +0.2 to 1.4 V in a buffered 
solution at pH 5.5 under Ar atmosphere. Scan rate, frequency, and potential amplitude were 
50 mV s-1, 100 Hz, and 4 mV, respectively. In the potential region between 0 and 0.8 V, the 
amplitude of the capacitive current of the electrical double layer (I) is essentially constant, and 
its value is about half that of the bare Au electrode, hereby used as a blank (dotted line). At 
poised potentials lower than 0.6 V, the current increases exponentially, as expected for SAM 
desorption.[2] The capacitive current measured after SAM desorption (short thick line) is twice 
that of the Au-SAM electrode and similar to that of the blank (dotted line). Please note that 
the minimum of the AC trace at 250 mV for the SAM-coated electrodes corresponding to the 
point of zero charge of the system is very close to 340 mV.  
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SI 2: Simulation setup 

 
2.1 Hydrogenase 

The structure of reduced MBH from Ralstonia eutropha (PDB: 3RGW) (figure E) served as a 
starting point for the calculations. The structure consists of the small subunit harbouring three 
FeS clusters and the large subunit carrying the active site and a conserved Mg2+ ion. The 
correct ligand configuration of the active site, as determined recently,[2] was taken into 
account. Furthermore, all crystallographic water molecules were included in the MBH model. 
The protein matrix was protonated according to pH 7.0 and treated with the CHARMM 27 
force field.[3] All histidine residues were modelled as HSD carrying a proton at the δ-nitrogen 
of the imidazole ring. The FeS clusters and the active site were treated as rigid bodies by 
constraining their internal motions. Their non-bonding interactions were calculated as 
reported earlier,[2] where the partial charges were derived by electrostatic potential fits with 
the Merz-Singh-Kollmann scheme.[4],[5] 

Moreover, the small subunit of the MBH hetero dimer, HoxK, was elongated by its C-terminal 
membrane anchor and an associated Strep-tag II peptide used for purification. The 
construction of the fusion protein is described in Schubert et al. [6] These structural elements 
are not resolved in the crystallographic structure, but the prediction with the PSIPRED server 
[7] showed the membrane anchor as a α-helical element, which is in agreement with the 
recently resolved crystallographic structure of`hydrogenase 1 from E. coli.[8] Thus, the C-
terminus was manually generated as an α-helix with VMD 1.8.7.[9] The Strep-tag II peptide 
was predicted as random coil by PSIPRED [7] and built as an extension to the C-terminal 
helix as predicted.   

The final model was energy-minimized, heated to 300 K, and equilibrated for 10 ns with 
NAMD 2.7 [10] to relax the structure. During these steps performed in vacuo, the 
experimentally resolved parts were fixed to their positions and only the extension was allowed 
to move freely. 

 

2.2 Surface 

The gold electrode was modelled as a perfect three layer Au(111) film with the x- and y-
dimensions of ca. 120 × 120 Å2. The fixed Au(111) film was functionalized with 672 6-
amino-1-hexanethiol SAM molecules, ca. 8 % of which were protonated and positively 
charged, which is in line with the approximate pKa (6.0±0.2).[11] In order to neutralize the 
resulting net charge of the SAM, the bottom layer gold atoms were slightly negatively 
charged (0.02777 e). All other gold atoms were treated as uncharged. In this way, a neutral 
surface was generated. The sulfur atoms of the SAM were arranged in a ( 3 × 3 )R30° lattice 
with a nearest neighbor spacing of 4.98 Å on the perfect Au(111) surface.[12],[13] The SAM 
molecules were initially tilted by ca. 30°. Gold and SAM atoms were described with the vdW 
radii from Bizzarri et al.[14] and the CHARMM force field for lipids,[15] respectively. The 
functional groups of the SAM were adopted from protonated and deprotonated lysine. Gold 
and SAM sulfur atoms were fixed to their positions, so that no binding parameters were 
required. 

 

2.3 Surface–MBH system 

In order to avoid long re-orientation times of Re MBH on the surface, we searched for 
energetically favorable starting orientations for the MD simulations. This was done in a 
systematic scanning of the interaction energy between Re MBH and the surface. The 
interaction energy of the enzyme (in a minimal separation distance of 5 Å with respect to the 
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SAM) and the surface was evaluated with the NAMD energy plugin in VMD using the 
parameter set described above. In each step of the scanning, the Re MBH was rotated by the 
angles Φ and Ψ around the x- and y- axis, respectively (figure F). The resulting interaction 
energy landscape, shown in figure F, identified two energy minima of Re MBH on the 
surface. Thus, two models starting from these energetically favorable orientations, shown in 
figure G, were simulated. In both scenarios, the MBH was placed in a 5 Å separation distance 
on the surface. Then, the two models were solvated in 120 × 120 × 150 Å3 (configuration A) 
and 120 × 120 × 170 Å3 (configuration B) large TIP3P water[16] boxes. Both systems were 
neutralized and 15 mM Na+Cl–  was added. 

  

2.4 Molecular dynamics simulations protocol 

All simulations were performed with NAMD 2.7 [10] using the CHARMM 27 force field [3] 
as described above. First, both models were energy-minimized with the conjugated gradient 
algorithm and heated to 300 K. Then the water was equilibrated for 60 ps. During these steps 
position restraints of 25 kcal mol1 Å2 on all heavy atoms were stepwise decreased until all 
atoms were allowed to move freely, except those described above. After the preparation, the 
two models were subjected to 50 ns long production dynamics carried out in an NPaT 
ensemble (constant number of particles (N), pressure (p = 1 atm), surface area (A), 
temperature (T = 300 K)) realized by Langevin piston dynamics.[17] Short-ranged 
electrostatics and vdW interactions in the periodic systems were cut at a distance of 12 Å. 
Long-ranged electrostatics were calculated by the Particle-Mesh Ewald summation.[18] The 
time step of 2 fs was enabled by using the Rattle algorithm constraining all bonds containing 
hydrogen atoms.   
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Figure H. Evolution of the angle between the dipole moment and the surface normal. The 
black and grey curves indicate the angle for configuration A and B, respectively. The 
corresponding dashed lines show the averages of the last 20 ns of the simulations. 
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Figure I. Evolution of the dipole moment magnitude for configuration A and B. 
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Figure J. Evolution of the root-mean-square deviation (RMSD) of the Re MBH backbone 
(without tail) for configuration A and B, calculated with respect to the crystallographic 
structure. 
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