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Figure A. Non-contact-mode AFM topographic mapping of the 6-amino-1-hexanethiol SAM-
modified gold surface without immobilized protein. The corresponding height profile of the
area, as indicated by the dashed vertical line, is shown in the manuscript in Figure 1D.

The enzyme coverage was estimated by evaluating AFM images of several independently
prepared samples and at least three different spots on each sample. The amount of Re MBH
units was counted via the respective periodicity derived from the height profiles as indicated
in Figure 1D for all recorded AFM images and was averaged subsequently.



1.2. Ellipsometry — determination of the protein layer thickness

Ellipsometry has been applied to determine the thickness of the protein layer adsorbed on
gold electrodes coated with an amino-terminated Self-Assembled Monolayer (SAM). The
respective ellipsometric measurements were performed with a PCSA (polariser-compensator-
sample-analyzer) ellipsometer (Optrel GbR, Sinzing, Germany). The experiments were
carried out at a constant wavelength of 632.8 nm and a fixed angle of incidence of 70° (near
the Brewster angle of the Si/air interface). The layer thickness was calculated with the
software "Ellipsometry: simulation and data evaluation" (Optrel, v. 3.1). For the protein, a
one-box model was assumed, in which the continuum media were air (n = 1.000) and gold (n
= 0,144; k = 3,178). The respective refractive index n and the absorption constant k£ of gold
were determined by measuring 5 different spots on the bare gold surface. With respect to its
small thickness the SAM layer could be neglected. In such way the thickness of the protein
layer was fitted. The obtained average ellipsometric angles A and ¥ were determined to be
100.19° and 43.29°. As thin films (< 10 nm) were investigated, only the respective A values
change significantly. The refractive index of the enzyme layer n was estimated to a value of
1.48.[1] Figure A displays changes of the ellipsometric angle A in dependence of the
thickness with respect to the applied model.

105

- \100 19

95

bl N

75

Thickness in nm

Figure B. Simulation of the ellipsometric angle A in dependence of the thickness according to
the applied model. The measured average A value of 100.19° represents a thickness of ca.
7 nm.



1.3. Electrochemical desorption of the amino-1-hexanethiol SAM
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Figure C. Reductive desorption of the amino-1-hexanethiol SAM. The chemically modified
Au electrode was subjected to an AC voltammetric sweep from +0.2 to —1.4 V in a buffered
solution at pH 5.5 under Ar atmosphere. Scan rate, frequency, and potential amplitude were
50 mV s, 100 Hz, and 4 mV, respectively. In the potential region between 0 and —0.8 V, the
amplitude of the capacitive current of the electrical double layer (/) is essentially constant, and
its value is about half that of the bare Au electrode, hereby used as a blank (dotted line). At
poised potentials lower than —0.6 V, the current increases exponentially, as expected for SAM
desorption.””! The capacitive current measured after SAM desorption (short thick line) is twice
that of the Au-SAM electrode and similar to that of the blank (dotted line). Please note that
the minimum of the AC trace at —250 mV for the SAM-coated electrodes corresponding to the
point of zero charge of the system is very close to =340 mV.



1.4. Protein Film Voltammetry — compared to the bare 6-amino-1-hexanethiol SAM
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Figure D. Voltammetric traces of immobilized Re MBH on a SAM-coated Au electrode in

the presence of H,-saturated buffer (solid line), corresponding to Figure 2A, and the

respective amino-1-hexanethiol SAM-coated Au electrode prior to immobilization (dashed
line).



SI 2: Simulation setup

2.1 Hydrogenase

The structure of reduced MBH from Ralstonia eutropha (PDB: 3RGW) (figure E) served as a
starting point for the calculations. The structure consists of the small subunit harbouring three
FeS clusters and the large subunit carrying the active site and a conserved Mg®" ion. The
correct ligand configuration of the active site, as determined recently,[2] was taken into
account. Furthermore, all crystallographic water molecules were included in the MBH model.
The protein matrix was protonated according to pH 7.0 and treated with the CHARMM 27
force field.[3] All histidine residues were modelled as HSD carrying a proton at the d-nitrogen
of the imidazole ring. The FeS clusters and the active site were treated as rigid bodies by
constraining their internal motions. Their non-bonding interactions were calculated as
reported earlier,[2] where the partial charges were derived by electrostatic potential fits with
the Merz-Singh-Kollmann scheme.[4],[5]

Moreover, the small subunit of the MBH hetero dimer, HoxK, was elongated by its C-terminal
membrane anchor and an associated Strep-tag II peptide used for purification. The
construction of the fusion protein is described in Schubert et al. [6] These structural elements
are not resolved in the crystallographic structure, but the prediction with the PSIPRED server
[7] showed the membrane anchor as a a-helical element, which is in agreement with the
recently resolved crystallographic structure of hydrogenase 1 from E. coli.[8] Thus, the C-
terminus was manually generated as an a-helix with VMD 1.8.7.[9] The Strep-tag 11 peptide
was predicted as random coil by PSIPRED [7] and built as an extension to the C-terminal
helix as predicted.

The final model was energy-minimized, heated to 300 K, and equilibrated for 10 ns with
NAMD 2.7 [10] to relax the structure. During these steps performed in vacuo, the
experimentally resolved parts were fixed to their positions and only the extension was allowed
to move freely.

2.2 Surface

The gold electrode was modelled as a perfect three layer Au(111) film with the x- and y-
dimensions of ca. 120 x 120 A’. The fixed Au(111) film was functionalized with 672 6-
amino-1-hexanethiol SAM molecules, ca. 8 % of which were protonated and positively
charged, which is in line with the approximate pK, (6.0+0.2).[11] In order to neutralize the
resulting net charge of the SAM, the bottom layer gold atoms were slightly negatively
charged (—0.02777 e). All other gold atoms were treated as uncharged. In this way, a neutral
surface was generated. The sulfur atoms of the SAM were arranged in a (+/3 x 4/3 )R30° lattice
with a nearest neighbor spacing of 4.98 A on the perfect Au(111) surface.[12][13] The SAM
molecules were initially tilted by ca. 30°. Gold and SAM atoms were described with the vdW
radii from Bizzarri et al.[14] and the CHARMM force field for lipids,[15] respectively. The
functional groups of the SAM were adopted from protonated and deprotonated lysine. Gold
and SAM sulfur atoms were fixed to their positions, so that no binding parameters were
required.

2.3 Surface-MBH system

In order to avoid long re-orientation times of Re MBH on the surface, we searched for
energetically favorable starting orientations for the MD simulations. This was done in a
systematic scanning of the interaction energy between Re MBH and the surface. The
interaction energy of the enzyme (in a minimal separation distance of 5 A with respect to the



SAM) and the surface was evaluated with the NAMD energy plugin in VMD using the
parameter set described above. In each step of the scanning, the Re MBH was rotated by the
angles ® and ¥ around the x- and y- axis, respectively (figure F). The resulting interaction
energy landscape, shown in figure F, identified two energy minima of Re MBH on the
surface. Thus, two models starting from these energetically favorable orientations, shown in
figure G, were simulated. In both scenarios, the MBH was placed in a 5 A separation distance
on the surface. Then, the two models were solvated in 120 x 120 x 150 A® (configuration A)
and 120 x 120 x 170 A? (configuration B) large TIP3P water[16] boxes. Both systems were
neutralized and 15 mM Na'Cl™ was added.

2.4 Molecular dynamics simulations protocol

All simulations were performed with NAMD 2.7 [10] using the CHARMM 27 force field [3]
as described above. First, both models were energy-minimized with the conjugated gradient
algorithm and heated to 300 K. Then the water was equilibrated for 60 ps. During these steps
position restraints of 25 kcal mol™" A on all heavy atoms were stepwise decreased until all
atoms were allowed to move freely, except those described above. After the preparation, the
two models were subjected to 50 ns long production dynamics carried out in an NPaT
ensemble (constant number of particles (), pressure (p = 1 atm), surface area (A),
temperature (77 = 300 K)) realized by Langevin piston dynamics.[17] Short-ranged
electrostatics and vdW interactions in the periodic systems were cut at a distance of 12 A.
Long-ranged electrostatics were calculated by the Particle-Mesh Ewald summation.[18] The
time step of 2 fs was enabled by using the Rattle algorithm constraining all bonds containing
hydrogen atoms.



SI 3: Figures Simulation

Figure E. Structure of the Re MBH dimer. Panel A shows the secondary structure of the
enzyme. The small and large subunits are colored in cyan and purple, respectively.
Additionally, the FeS clusters are indicated as spheres. In panel B, the electrostatic potential
surface calculated with the APBS tool [19] is qualitatively displayed (range: —90 kT/e to +45
kT/e). Red and blue indicate negatively and positively charged regions, respectively. The
yellow arrow indicates the direction of the dipole moment (ca. 680 Debye) of the dimer.
Charges and radii were used as defined in the CHARMM force field.
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Figure F. Interaction energy landscape between the Re MBH and the surface. The in vacuo
interaction energy between the rotating Re MBH (in a 5 A separation distance to the SAM)
and the surface was calculated with the NAMD energy plugin for VMD. In addition to the
energy maps, the two energetically most favorable configurations (A and B) are shown. The
dotted arrow indicates an additional energy minimum, which corresponds to a configuration
very similar to configuration A. Interaction energies were computed with the parameter set
described above. The two angles @ and W describe the rotation of the protein around the x-
and y-axis, respectively.
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Figure G. Initial alignment of the Re MBH on the surface. Energetically most favorable
initial orientations A and B of the Re MBH on the amino-terminated SAMs (Fig. F) are shown
in more detail. The red arrow indicates the direction of the dipole moment of the enzyme.
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Figure H. Evolution of the angle between the dipole moment and the surface normal. The
black and grey curves indicate the angle for configuration A and B, respectively. The
corresponding dashed lines show the averages of the last 20 ns of the simulations.
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Figure I. Evolution of the dipole moment magnitude for configuration A and B.
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Figure J. Evolution of the root-mean-square deviation (RMSD) of the Re MBH backbone

(without tail) for configuration A and B, calculated with respect to the crystallographic
structure.
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