Supporting Information

A multiscale vibrational spectroscopic approach for identification and biochemical characterization of pollen
Murat Bağcıoğlu ${ }^{1 *}$, Boris Zimmermann ${ }^{1}$, Achim Kohler ${ }^{1,2}$
${ }^{1}$ Department of Mathematical Sciences and Technology, Faculty of Environmental Science and Technology, Norwegian University of Life Sciences, Ås, Norway
${ }^{2}$ Nofima AS, Ås, Norway

* Corresponding author
E-mail: murat.bagcioglu@nmbu.no (MB)
Table of Contents Page
Fig. A CPCA correlation loading plots with markings related to ATI 2
Fig. B CPCA correlation loading plots with markings related to ATG 5
Fig. C CPCA correlation loading plots with markings related to KBR 8
Fig. D CPCA correlation loading plots with markings related to MGR 11
Fig. E CPCA correlation loading plots with markings related to SGR 14
Fig. F CPCA correlation loading plots with markings related to RMS 17
Fig. G CPCA correlation loading plots with markings related to RMC 20
Fig. H 3D presentation of global score plot 23
Fig. I PCA score plots for individual blocks, genus level 24
Fig. J Raman spectra of corpus and saccus region of species 25
Fig. K PCA score plots for individual blocks, species level 26
Fig. L PCA score plots for ATI block, species level 27
Fig. M PCA score plots for KBR block, species level 28
Fig. N PCA score plots for RMC block, species level 29
Table A Variability measurements within replicates of Pinus genus 30
Table B Variability measurements within replicates of Picea genus 31

Fig. A (Part 1) CPCA correlation loading plots for the first two principal components. Variables related to ATR IR measurements of intact pollen grains (ATI) are presented in black color; (A) plot for the selected variables, and (B) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. A (Part 2) CPCA correlation loading plots for the second and the third principal components. Variables related to ATR IR measurements of intact pollen grains (ATI) are presented in black color; (C) plot for the selected variables, and (D) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. A (Part 3) Second-derivative and EMSC corrected spectra obtained by ATR IR measurements of intact pollen grains (ATI). Average spectra of five representative species are presented: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Pinus banksiana (PiBa), Podocarpus neriifolius (PoNe). The selected vibrational bands associated to the CPCA correlation loading plots on Figures S1 are marked.

Fig. B (Part 1) CPCA correlation loading plots for the first two principal components. Variables related to ATR IR measurements of ground pollen grains (ATG) are presented in black color; (A) plot for the selected variables, and (B) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. B (Part 2) CPCA correlation loading plots for the second and the third principal components. Variables related to ATR IR measurements of ground pollen grains (ATG) are presented in black color; (C) plot for the selected variables, and (D) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. B (Part 3) Second-derivative and EMSC corrected spectra obtained by ATR IR measurements of ground pollen grains (ATG). Average spectra of five representative species are presented: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Pinus banksiana (PiBa), Podocarpus neriifolius (PoNe). The selected vibrational bands associated to the CPCA correlation loading plots on Figures S-2 are marked.

Fig. C (Part 1) CPCA correlation loading plots for the first two principal components. Variables related to transmission FTIR spectroscopy of KBr pellets (KBR) are presented in black color; (A) plot for the selected variables, and (B) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. C (Part 2) CPCA correlation loading plots for the second and the third principal components. Variables related to transmission FTIR spectroscopy of KBr pellets ($\mathbf{K B R}$) are presented in black color; (C) plot for the selected variables, and (D) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. C (Part 3) Second-derivative and EMSC corrected spectra obtained by transmission FTIR spectroscopy of KBr pellets (KBR). Average spectra of five representative species are presented: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Pinus banksiana (PiBa), Podocarpus neriifolius (PoNe). The selected vibrational bands associated to the CPCA correlation loading plots on Figures S3 are marked.

Fig. D (Part 1) CPCA correlation loading plots for the first two principal components. Variables related to transmission FTIR microspectroscopy of pollen multigrain (MGR) are presented in black color; (A) plot for the selected variables, and (B) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. D (Part 2) CPCA correlation loading plots for the second and the third principal components. Variables related to transmission FTIR microspectroscopy of pollen multigrain (MGR) are presented in black color; (C) plot for the selected variables, and (D) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. D (Part 3) Second-derivative and EMSC corrected spectra obtained by transmission FTIR microspectroscopy of pollen multigrain (MGR). Average spectra of five representative species are presented: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Pinus banksiana (PiBa), Podocarpus neriifolius (PoNe). The selected vibrational bands associated to the CPCA correlation loading plots on Figures S 4 are marked.

Fig. E (Part 1) CPCA correlation loading plots for the first two principal components. Variables related to transmission FTIR microspectroscopy of single pollen grain ($\mathbf{S G R}$) are presented in black color; (\mathbf{A}) plot for the selected variables, and (B) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. E (Part 2) CPCA correlation loading plots for the second and the third principal components. Variables related to transmission FTIR microspectroscopy of single pollen grain (SGR) are presented in black color; (C) plot for the selected variables, and (D) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. E (Part 3) Second-derivative and EMSC corrected spectra obtained by transmission FTIR microspectroscopy of single pollen grain (SGR). Average spectra of five representative species are presented: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Pinus banksiana (PiBa), Podocarpus neriifolius (PoNe). The selected vibrational bands associated to the CPCA correlation loading plots on Figures S5 are marked.

Fig. F (Part 1) CPCA correlation loading plots for the first two principal components. Variables related to Raman microspectroscopy measurements of saccus part of pollen grain (RMS) are presented in black color; (A) plot for the selected variables, and (B) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. F (Part 2) CPCA correlation loading plots for the second and the third principal components. Variables related to Raman microspectroscopy measurements of saccus part of pollen grain (RMS) are presented in black color; (C) plot for the selected variables, and (D) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. F (Part 3) Second-derivative and EMSC corrected spectra obtained by Raman microspectroscopy measurements of saccus part of pollen grain (RMS). Average spectra of five representative species are presented: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Pinus banksiana (PiBa), Podocarpus neriifolius (PoNe). The selected vibrational bands associated to the CPCA correlation loading plots on Figures S6 are marked.

Fig. G (Part 1) CPCA correlation loading plots for the first two principal components. Variables related to Raman microspectroscopy measurements of corpus part of pollen grain ($\mathbf{R M C}$) are presented in black color; (\mathbf{A}) plot for the selected variables, and (\mathbf{B}) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. G (Part 2) CPCA correlation loading plots for the second and the third principal components. Variables related to Raman microspectroscopy measurements of corpus part of pollen grain (RMC) are presented in black color; (C) plot for the selected variables, and (D) plot for all variables. Design variables related to plant genera are presented in blue color: Abies (Ab), Cedrus (Ce), Picea (Pc), Pinus (Pi), Podocarpus (Po).

Fig. G (Part 3) Second-derivative and EMSC corrected spectra obtained by Raman microspectroscopy measurements of corpus part of pollen grain (RMC). Average spectra of five representative species are presented: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Pinus banksiana (PiBa), Podocarpus neriifolius (PoNe). The selected vibrational bands associated to the CPCA correlation loading plots on Figures S7 are marked.

Fig. H 3D presentation of global scores of consensus principal component analysis (CPCA). Markings are labelled in accordance to pollen genus: Abies (red), Cedrus (blue), Picea (green), Pinus (dark yellow), and Podocarpus (violet). The percent variances for the first five PCs are 56.0, 12.2, 9.4, 7.5 and 5.1.

Fig. I PCA score plots performed on individual spectral data blocks: 1) ATI (ATR-FTIR of intact pollen), 2) ATG (ATR-FTIR of ground pollen), 3) MGR (transmission FTIR microspectroscopy of multigrain), 4) SGR (transmission FTIR microspectroscopy of single grain), 5) KBR (transmission FTIR of KBr pellets), 6) RMC (Raman of corpus region) and 7) RMS (Raman of saccus region). Samples are labelled in accordance to pollen genus: Abies (Ab, red), Cedrus (Ce, blue), Picea (Pc, green), Pinus (Pi, dark yellow), Podocarpus (Po, violet).

wavenumbers (cm^{-1})
Fig. J Raman spectra of representative samples of Picea omorika pollen. The spectral set consists of EMSC normalized spectra of measurements of corpus region (RMC), and saccus region (RMS), with four spectra per region.

Fig. K PCA score plots performed on individual spectral data blocks: 1) ATI (ATR-FTIR of intact pollen), 2) ATG (ATR-FTIR of ground pollen), 3) MGR (transmission FTIR microspectroscopy of multigrain), 4) SGR (transmission FTIR microspectroscopy of single grain), 5) KBR (transmission FTIR of KBr pellets), 6) RMC (Raman of corpus region) and 7) RMS (Raman of saccus region). Samples are labelled in accordance to pollen species: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Picea orientalis (PcOr), Picea pungens (PcPu), Pinus banksiana (PiBa), Pinus mugo (PiMu), Pinus nigra (PiNi), Pinus peuce (PiPe), Pinus resinosa (PiRe), Pinus sylvestris (PiSy), Pinus tabuliformis (PiTa), Pinus wallichiana (PiWa),Podocarpus neriifilious (PoNe).

Fig. L PCA score plots performed on individual spectral data blocks: ATI (ATR-FTIR of intact pollen). Samples are labelled in accordance to pollen species: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Picea orientalis (PcOr), Picea pungens (PcPu), Pinus banksiana (PiBa), Pinus mugo (PiMu), Pinus nigra (PiNi), Pinus peuce (PiPe), Pinus resinosa (PiRe), Pinus sylvestris (PiSy), Pinus tabuliformis (PiTa), Pinus wallichiana (PiWa),Podocarpus neriifilious (PoNe).

Fig. M PCA score plots performed on individual spectral data blocks: KBR (transmission FTIR of KBr pellets). Samples are labelled in accordance to pollen species: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Picea orientalis (PcOr), Picea pungens (PcPu), Pinus banksiana (PiBa), Pinus mugo (PiMu), Pinus nigra (PiNi), Pinus peuce (PiPe), Pinus resinosa (PiRe), Pinus sylvestris (PiSy), Pinus tabuliformis (PiTa), Pinus wallichiana (PiWa),Podocarpus neriifilious (PoNe).

Fig. N PCA score plots performed on individual spectral data blocks: RMC (Raman spectra of corpus region). Samples are labelled in accordance to pollen species: Abies cephalonica (AbCe), Cedrus atlantica (CeAt), Picea omorika (PcOm), Picea orientalis (PcOr), Picea pungens (PcPu), Pinus banksiana (PiBa), Pinus mugo (PiMu), Pinus nigra (PiNi), Pinus peuce (PiPe), Pinus resinosa (PiRe), Pinus sylvestris (PiSy), Pinus tabuliformis (PiTa), Pinus wallichiana (PiWa),Podocarpus neriifilious (PoNe).

Table A Variability measurements within replicates ${ }^{\S}$ of Pinus genus.

IR Region	Species								Genus
$\begin{aligned} & 1200-700 \mathrm{~cm}^{-1} \\ & \left(1-P C C^{*}\right) \times 10^{-4} \end{aligned}$	Pinus banksiana	Pinus peuce	Pinus mugo	Pinus nigra	Pinus resinosa	Pinus sylvetris	Pinus tabuliformis	Pinus, wallichiana	Pinus
ATI	0.003681	0.000889	0.001097	0.001414	0.001061	0.001272	0.001957	0.000922	0.0043
ATG	0.008495	0.005373	0.024527	0.030032	0.019066	0.010331	0.038434	0.015859	0.0381
KBR	0.074957	0.096663	0.029511	0.168076	0.177112	0.07285	0.088509	0.064469	0.1760
MGR	0.006705	0.002553	0.009297	0.001983	0.012672	0.006115	0.001965	0.004316	0.0180
SGR	0.269506	0.074953	0.235117	0.080506	0.11851	0.254767	0.085362	0.068036	0.1927
RMS	0.00051	0.000404	0.001007	0.002186	0.000739	0.001633	0.000143	0.000233	0.0070
RMC	0.002131	0.001705	0.001667	0.004697	0.002735	0.001638	0.00268	0.000619	0.0108

IR Region	Species								Genus
$\begin{aligned} & 1800-1500 \mathrm{~cm}^{-1} \\ & \left(1-P C C^{*}\right) \times 10^{-4} \end{aligned}$	Pinus banksiana	Pinus peuce	Pinus mugo	Pinus nigra	Pinus resinosa	Pinus sylvetris	Pinus tabuliformis	Pinus wallichiana	Pinus
ATI	0.005322	0.000278	0.000382	0.009551	0.000311	0.003848	0.009442	0.000768	0.0067
ATG	0.026859	0.099302	0.095689	0.122511	0.031509	0.002885	0.026689	0.00311	0.0698
KBR	0.040537	0.073159	0.046467	0.00788	0.021484	0.019477	$6.60 \mathrm{E}-02$	0.01467	0.0487
MGR	0.008991	0.038083	0.004665	0.020438	0.023404	0.006171	0.012604	0.009468	0.0293
SGR	0.134267	0.043698	0.068565	0.109443	0.023178	0.107776	0.076228	0.016804	0.1057
RMS	0.000186	0.000219	0.000585	0.001669	0.000926	0.001032	$8.40 \mathrm{E}-05$	0.000381	0.0081
RMC	0.000538	0.000187	0.000365	0.002432	0.000268	0.000659	0.000346	0.000137	0.0074

*Pearson Correlation Coefficient (PCC)
${ }^{\S}$ Replicate spectra were obtained from same sample measured as at least three times.

Table B Variability measurements within replicates ${ }^{\S}$ of Picea genus

IR Region	Species			Genus
$\mathbf{1 2 0 0 - 7 0 0} \mathbf{c m}^{-1}$ $\left(\mathbf{1 - P C C}{ }^{*}\right) \mathbf{x 1 0}^{-4}$	Picea omorika	Picea oritentalis	Picea pungens	Picea
ATI	0.00109	0.00165	0.00308	0.00360
ATG	0.00858	0.01830	0.01088	0.00287
KBR	0.26673	0.06914	0.25413	0.37640
MGR	0.00377	0.00272	0.00659	0.01660
SGR	0.08598	0.05455	0.01603	0.06600
RMS	0.00164	0.00078	0.00030	0.00380
RMC	0.02821	0.01491	0.01526	0.06600

IR Region	Species			Genus
$\mathbf{1 8 0 0 - 1 5 0 0} \mathbf{c m}^{-\mathbf{1}}$ $\left(\mathbf{1 - P C C} \mathbf{F}^{-4} \mathbf{x 0}^{-4}\right.$	Picea omorika	Picea oritentalis	Picea pungens	Picea
ATI	0.00065	0.00097	0.00223	0.00460
ATG	0.00537	0.22381	0.02451	0.10210
KBR	0.02929	0.01872	0.11992	0.09470
MGR	0.00152	0.27308	0.01386	0.11870
SGR	0.05143	0.04629	0.00413	0.05790
RMS	0.00069	0.00103	0.00016	0.00350
RMC	0.00303	0.00325	0.00145	0.00960

*Pearson Correlation Coefficient (PCC)
${ }^{\S}$ Replicate spectra were obtained from same sample measured as at least three times.

Reproducibility and variability of vibrational spectroscopic measurements was estimated by Pearson's correlation coefficient (PCC). For the sake of clarity, due to attained PCC-values, which were very close to one, results were displayed as 1-PCC.The closer the obtained values are to zero, the lower the variability in the respective data set. The variability test was performed for the two different spectral regions. The spectra were transformed to second derivative form by Savitzky-Golay (SG) algorithm algorithm followed by Extended multiplicative signal correction (EMSC) pre-processing, same as performed in Consensus principal component analysis (CPCA).

