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S1 Text

The estimation of the weighted-sum rule is based on the optimization of
the following set of equations, for each subject. First, the person vector 6, is
based on the implicit weight for the number-of-blocks (e, > .5) or distance (o, < .5)
dimension and on the characteristics of the item set:

0, = (apwl+ (1 — ap)dl) — (apwr + (1 — ap)dr)
= apAw; + (1 — ap)Ad;.
Based on the scaled 0, (0 = 1), and assuming a normal density to express the response

probabilities, the log-likelihood of the response vector can be expressed as follows
(person subscripts are dropped):
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where the indicator terms, R; = [, b, r, are one if the response is respectively left,
balance or right and zero otherwise.
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Figure A. The response probabilities expressed by the weighted-sum rule.

S1 Fig A shows a visual representation of these response probabilities. The set of
functions is optimized with respect to o and C', using a constrained optimization
implemented with the optim-function in Cran-R [41]. « is constrained between zero and
one, and C higher than zero. Note that [13] also propose an implicit multiplication rule
that can capture RIV. However it is not possible to estimate the parameters of this rule
since the likelihood function is zero if « is zero, hence this rule will not be further
studied.
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