Table S1. Biological metrics used to evaluate coral-reef ecosystem conditions that were related reef processes and ecological principles.

METRIC	KEY PROCESSES	FOUNDATIONAL PRINCIPLES	SUPPORTING CITATIONS
FISH ASSEMBLAGE SIZE	Grazing, disturbance resistance, recovery potential, distribution of diversity across trophic guilds, sustainable provisioning	Allometry, reproduction, niche partitioning, distribution of biomass across fast/slow energy pathways in food webs, size-based fishery regulations	[1] [2] [3] [4] [5] [6] [7] [8] [9] [10,11]
FISH ASSEMBLAGE BIOMASS	Disturbance resistance, recovery potential, carbon sequestration, sustainable provisioning	Food web stability, Nutrient cycling, harvesting quotas,	[11-17]
PREDATOR BIOMASS	Competitive dominance in lower trophic guilds, carbon sequestration, ecosystem function	Predation, competition, diversity maintenance, trophic cascades, food web stability	[13,14,18-20]
FISH ASSEMBLAGE HETEROGENEITY AND EVENNESS	Disturbance resistance, recovery potential	Response diversity, functional redundancy, food web stability	[18,21-27]
BENTHIC SUBSTRATE RATIO ¹	Reef calcification and accretion, carbon sequestration	Competition, slow energy pathways in food webs	[10,16,28-30]
CORAL COVER	Habitat formation and complexity, reef calcification and accretion, carbon sequestration	Nutrient cycling, fundamental niche creation, slow energy pathways in food webs	[31-34]
MACROALGAL COVER	Competition, grazing, carbon recycling	Nutrient cycling, herbivore response, fast energy pathways in food webs	[16,28-30]
CORAL EVENNESS, SPECIES RICHNESS, AND ASSEMBLAGE HETEROGENEITY	Habitat complexity, disturbance resistance, recovery potential	Response diversity, functional diversity, food web stability	[4, 31-35]
CORAL ASSEMBLAGE SKEWNESS	Recruitment, habitat complexity, habitat formation	Allometry, fundamental niche creation, fast/slow energy pathways in food	[16,33,36,37]

	webs, population dynamics	

References

- 1. Birkeland C, Dayton PK (2005) The importance in fishery management of leaving the big ones. Trends Ecol Evol 20: 356-358.
- 2. Lokrantz J, Nyström M, Thyresson M, Johansson C (2008) The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27: 967-974.
- 3. Sweatman H (2008) No-take reserves protect coral reefs from predatory starfish. Curr Biol 18: R598-R599.
- 4. Houk P, Benavente D, Fread V (2012) Characterization and evaluation of coral reefs around Yap Proper, Federated States of Micronesia. Biodiver Conserv 21: 2045-2059.
- 5. Piet G, Pet J, Guruge W, Vijverberg J, Van Densen W (1999) Resource partitioning along three niche dimensions in a size-structured tropical fish assemblage. Canadian J Fish Aquat Sci 56: 1241-1254.
- 6. Welsh J, Goatley C, Bellwood D (2013) The ontogeny of home ranges: evidence from coral reef fishes. Proc Roy Soc B: Biol Sci 280: 20132066.
- 7. Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat: 145-159.
- 8. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, et al. (2009) Rebuilding global fisheries. Science 325: 578-585.
- 9. Rooney N, McCann KS, Moore JC (2008) A landscape theory for food web architecture. Ecol Lett 11: 867-881.
- 10. Rooney N, McCann KS (2012) Integrating food web diversity, structure and stability. Trends Ecol Evol 27: 40-46.
- 11. Banse K (2007) Do we live in a largely top-down regulated world ? J Biosci 32: 791-796.
- 12. Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol System: 341-370.
- 13. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, et al. (2011) Trophic downgrading of planet Earth. Science 333: 301-306.
- 14. Vanni MJ, Layne CD, Arnott SE (1997) "Top-down" trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78: 1-20.
- 15. Costello C, Gaines SD, Lynham J (2008) Can catch shares prevent fisheries collapse? Science 321: 1678-1681.
- 16. Hoegh-Guldberg O, Mumby P, Hooten A, Steneck R, Greenfield P, et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318: 1737-1742.
- 17. Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, et al. (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311: 98-101.
- Houk P, Benavente D, Iguel J, Johnson S, Okano R (201r) Coral reef disturbance and recovery dynamics differ across gradients of localized stressors in the Mariana Islands. PLoS ONE 9:e105731.
- 19. Burkepile DE, Allgeier JE, Shantz AA, Pritchard CE, Lemoine NP, et al. (2013) Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Scientific Reports 3: 1493.
- 20. Bascompte J, Melián CJ (2005) Simple trophic modules for complex food webs. Ecology 86: 2868-2873.

- Mellin C, Bradshaw C, Fordham D, Caley M (2014) Strong but opposing β-diversity– stability relationships in coral reef fish communities. Proc Roy Soc B: Biol Sci 281: 20131993.
- 22. Thibaut LM, Connolly SR, Sweatman HP (2012) Diversity and stability of herbivorous fishes on coral reefs. Ecology 93: 891-901.
- 23. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483: 205-208.
- 24. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423: 280-283.
- 25. Bellwood DR (2003) Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29: 71-83.
- 26. Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94: 1347-1358.
- 27. Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Nat Acad Sci 105: 16201-16206.
- 28. Lirman D (2001) Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs 19: 392-399.
- 29. Tanner JE (1995) Competition between scleractinian corals and macroalgae: an experimental investigation of coral growth, survival and reproduction. J Exp Mar Biol Ecol 190: 151-168.
- 30. Moore JC, Berlow EL, Coleman DC, Ruiter PC, Dong Q, et al. (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7: 584-600.
- 31. Graham NA, Wilson SK, Jennings S, Polunin NV, Bijoux JP, et al. (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Nat Acad Sci 103: 8425-8429.
- 32. Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc Roy Soc B: Biol Sci: rspb20090339.
- 33. Almany GR (2004) Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141: 105-113.
- 34. Wilson S, Fisher R, Pratchett M, Graham N, Dulvy N, et al. (2008) Exploitation and habitat degradation as agents of change within coral reef fish communities. Glob Change Biol 14: 2796-2809.
- 35. Baskett ML, Fabina NS, Gross K (2014) Response Diversity Can Increase Ecological Resilience to Disturbance in Coral Reefs. Am Nat 184: E16-E31.
- 36. Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reefbuilding corals. Am Nat: 731-742.
- 37. Meesters E, Hilterman M, Kardinaal E, Keetman M, De Vries M, et al. (2001) Colony sizefrequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar Ecol Prog Ser 209: 43-54.