Supplementary Text 1. Procedure for choosing b-mer length, and BF loading and querying

Loading Bloom filter. In this stage, all target sequences in the target set $T = \{T_1, T_2, ...\}$ are scanned using a sliding substring of length b which is called b-mer. For each target sequence T_i , all possible $|T_i| - b + 1$ b-mers are scanned and then inserted to the Bloom filter after specifying the corresponding bit vector positions by computing the k hash values for each b-mer.

	target-seq
	
<b+1></b+1>	
<b+2></b+2>	
<	T >

Querying Bloom filter. In this step, all reads in the read set $R = \{R_1, R_2, ...\}$ are queried using the same *b*-mer in the loading stage. If at least one hit is found for a read, the read is dispatched to the corresponding node. We can use sliding *b*-mer windows (with step size of one base, s = 1) or jumping *b*-mer windows (with step size greater than one base) to interrogate each read R_j as explained below.

Suppose that the minimum seed or exact match length to report a candidate hit for an aligner is l. We choose $b \leq l$ and then load the Bloom filters as mentioned in the *Loading Bloom filter* stage. In the querying stage, the *b*-mers of each read sequence is interrogated against all Bloom filters from different partitions. If b = l, the reads are scanned using sliding window with step size of one base, i.e. s = 1. By choosing b < l, the interrogation step will be faster but with more extra dispatched reads, and the step size is computed as follows to cover all possible seeds or exact matches of length l between the target sequence T_i and read sequence R_j . If the *l*-mer starting at position p is covered by at least one *b*-mer, to cover the next *l*-mer starting at position p + 1 we should have $s + b \leq l + 1$. Therefore, $s \leq l - b + 1$.

