Supplementary Text 1. Procedure for choosing b-mer length, and BF loading and querying

Loading Bloom filter. In this stage, all target sequences in the target set $T=\left\{T_{1}, T_{2}, \ldots\right\}$ are scanned using a sliding substring of length b which is called b-mer. For each target sequence T_{i}, all possible $\left|T_{i}\right|-b+1 b$-mers are scanned and then inserted to the Bloom filter after specifying the corresponding bit vector positions by computing the k hash values for each b-mer.

Querying Bloom filter. In this step, all reads in the read set $R=\left\{R_{1}, R_{2}, \ldots\right\}$ are queried using the same b-mer in the loading stage. If at least one hit is found for a read, the read is dispatched to the corresponding node. We can use sliding b-mer windows (with step size of one base, $s=1$) or jumping b-mer windows (with step size greater than one base) to interrogate each read R_{j} as explained below.

Suppose that the minimum seed or exact match length to report a candidate hit for an aligner is l. We choose $b \leq l$ and then load the Bloom filters as mentioned in the Loading Bloom filter stage. In the querying stage, the b-mers of each read sequence is interrogated against all Bloom filters from different partitions. If $b=l$, the reads are scanned using sliding window with step size of one base, i.e. $s=1$. By choosing $b<l$, the interrogation step will be faster but with more extra dispatched reads, and the step size is computed as follows to cover all possible seeds or exact matches of length l between the target sequence T_{i} and read sequence R_{j}. If the l-mer starting at position p is covered by at least one b-mer, to cover the next l-mer starting at position $p+1$ we should have $s+b \leq l+1$. Therefore, $s \leq l-b+1$.

