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S1 Methods. Survival model.
Survival analysis using neural networks

Cox regression models are the most commonly used methods for survival analysis in clinical research. Given
its assumptions of proportionality of the hazard and the usual linear modelling of the covariates one would
like to extend the analysis methods. Models using ANN have the ability to model the hazard with explicit
time dependency and flexible nonlinear effects among the covariates. Biganzoli et al. showed that by
treating the time interval as an input variable in a standard feed-forward ANN with a cross-entropy error
function, it was possible to estimate smoothed discrete hazards as conditional probabilities of failure [1].
The survival models used in this project follows the principles described in Biganzoli et al. with the
extension of using ensembles of ANNs instead of a single one [2]. For a general introduction to ANN see
the Cross et al [3]. The ANNs were implemented as feed-forward multilayer perceptrons (MLP) with one
hidden layer with the hyperbolic tangent as the activation function. The following error function was used
during the training of the ANN models,

E =
∑
i

∑
l

[dil log (hl(xi, al)) + (1− dil) log (1− h(xi, hl))]

where hl(xi, al) is a smoothed estimate of the discrete hazard function for time interval l, which is modeled
by the ANN output. The variables (xi, al) represents the covariates for patient i and midpoint time for
interval l, respectively. The event indicator dil variable is one if uncensored patient i has the event in time
interval l and zero otherwise. In order to have the possibility to regularize the ANN models a weight decay
term was added to the above error function. This term, Er = α

∑
j ω

2
j introduces the parameter α , which

is tuned during the model calibration procedure (see below). Finally to optimize the performance of the
ANN model an ensemble approach were used, where several ANNs were combined into a single prediction
model. The output of the ANN ensemble was computed as the mean of the output of the individual
members in the ensemble. The ensemble was constructed by training the ANNs on different training sets,
obtained from the random imputation technique when dealing with missing data. The ensemble size was
10 and no effort was used to optimize this number. Given the discrete hazard function hl(xi, al) and the
definition S(t0) = 1 the full survival curve can be constructed according to,

S(t) =
∏

l:tl<t

(1− hl)

where tl is the end time for interval l.

Calibration and validation of the ANN models

Calibration of each individual ANN was accomplished by minimizing the above error function using resilient
back-propagation. To find the optimal regularization parameter and the optimal number of hidden nodes
for the ANN 5-fold cross-validation was utilized. The number of hidden nodes was determined based on
experiments starting with a single node and increasing the number of nodes until the highest accuracy
was found for the validation sets. By a similar procedure the α -parameter was chosen to optimize the
validation performance. When all parameters were set a new calibration using the full training dataset
was performed. Throughout the model calibration the ensemble approach was used utilizing 10 different
datasets, obtained from the missing data imputation technique (see below). The derivation cohort was
used to calibrate and identify the optimal architecture for the ANN.
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Risk variables identifications

To identify important risk variables and to select the optimal set of risk variables used in the survival
model, a ranking of risk variables was performed [4,5]. A baseline C-index is created using all variables.
The ranking list was then obtained by measuring the change of the C-index, as compared to the baseline,
when a risk variable was excluded from the model. The highest ranked variable corresponds to the largest
decrease of the C-index when it is excluded from the model. The lowest ranked variable will have the
smallest effect on the C-index when excluded from the model and was subsequently be removed from the
model. A new survival model was created and a new baseline C-index was computed, giving a new ranking
list from which the lowest ranked variable again was removed. This backward elimination procedure was
repeated until only one variable was left. The order in which the variables were removed constituted the
final ranking list. Throughout this procedure full calibration of the model was performed, see Figure 1A
for an illustration of the procedure including both model calibration and risk variable identification. The
selection of the final set of variables was based in the obtained ranking list and was selected when no
performance increase was found when adding the next variable from the ranking list. This resulted in
a final model including 43 inputs, 18 hidden nodes, 25 time intervals and 10 committee members in the
ensemble.
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