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Supporting Information: Total pressure drop along the needle

Entrance Flow in the Needle

We shall now consider the flow in the needle. The Reynolds number for the characteristic flow rates
achieved during injection can be expressed in terms of the inner needle diameter D, the flow rate Q and
the kinematic viscosity ν,

Re =
4Q

πDν
, (1)

For a flow rate of approximately 200µL/s and a needle diameter of 135µm, we obtain Re ∼ 1900. Even
though this value is below the critical value for onset of turbulent flow in a pipe, we see that the inertial
forces are not negligible. The flow in the entrance region of the pipe therefore differs from the laminar
Poiseuille flow.

Due to the friction with the wall, boundary layers with increasing widths downstream will be formed
at small distances from the needle inlet. In the boundary layers, the fluid particles experience a reduction
of their velocity and owing to mass conservation the velocity of the particles near the axis must increase.
In the entrance region the velocity field will vary not only in the radial direction but also in the axial
direction1. However, sufficiently far from the inlet where the width of the boundary layer is approxi-
mately equal to the needle radius, the viscous forces will dominate and the velocity profile will become
asymptotically parabolic as in the Poiseuille flow. The length of the entrance region when the boundary
layers merge into each other is called the entry length, and we shall denote it by Le . Since the inertial
forces are not negligible in the entrance region a higher pressure gradient is needed to establish a given
flow rate than in the case of a Poiseulle flow.

The development of flow patterns in the inlet of a 2D channel with parallel walls was studied in [1]
and [2]. Details on the flow in the entrance of a pipe can be found in [3].

We shall here follow the calculations of [3] in order to calculate the pressure drop along the needle.

Governing equations

For this axially symmetrical flow the mass conservation equation, the radial and longitudinal Navier-
Stokes equations read respectively,

∂zvz +
1

r
∂r(rvr) = 0, (2)

vz∂zvr + vr∂rvr = −1

ρ
∂rp+

ν

r
∂r

(
1

r
∂r(rvr)

)
+ ν∂2zvr (3)

and

vz∂zvz + vr∂rvz = −1

ρ
∂zp+

ν

r
∂r (r∂rvz) + ν∂2zvz. (4)

The boundary conditions are,

vz = Uo vr = 0 z = 0,∀(0≤r≤R). (5)

vz = 2Uo

(
1−

( r
R

)2)
vr = 0 z =∞,∀(0≤r≤R). (6)

1This dependence of the velocity field on the axial coordinate constitutes a difference to Poiseuille flow in which for a
given distance to the wall the velocity remains constant along the axial direction
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vz = vr = 0 r = R,∀(0<z<∞). (7)

We shall now simplify the Navier-Stokes equations given the relatively high Reynolds numbers estimated
for the injection problem. The longitudinal velocity in the bulk of the flow is Uo. The boundary layer
thickness, δ, is proportional to the square root of the kinematic viscosity of the fluid and it can be
rigorously proven that near the inlet (see [1])

δ(z)

L
∼
√

ν

Uoz
, (8)

in which L denote a characteristic length of the variation of the axial velocity along the z coordinate,
and δ(z) denote the boundary layer thickness at position z. The variation of the longitudinal velocity vz
takes place over distances equal to the entry length, in which δ(Le) = R leading to the estimate2

R

Le
∼ 1

Re
(9)

With the above estimate we conclude that

∂2zvz
∂2rvz

∼ 1

Re2
. (10)

From the continuity equation we can see that vr ∼ Uo

Re . Similarly, making the estimation for the pressure
variation in the entrance region from Eq. (4) we have

∆zP ∼ ρU2
o , (11)

whereas from Eq. (3) we have for the transverse variation

∆rP ∼ ρU2
o

1

Re2
(12)

Thus, we can consider that for high Reynolds number the pressure in a cross-section of the pipe is
practically constant when compared with the z-variation. Then, for the typical Reynolds numbers of the
injection we can describe the flow inside the needle by the following systems of symplified Navier-Stokes
equations, known as Prandtl’s boundary layer equations

∂zvz +
1

r
∂r(rvr) = 0, (13)

vz∂zvz + vr∂rvz = −1

ρ
∂zp+

ν

r
∂r (r∂rvz) . (14)

The solution of this system of equations was solved in [3]. There, the axial velocity was determined as

vz = Uo
Io(β)− Io(β r

R )

I2(β)
, (15)

in which In is the hyperbolic Bessel function of n’th order and β = β(z) is a function of the z coordinate
which can be determined as [3].

dz

dβ
= −ReR

2

f ′(β)

g(β)
β →∞(z → 0) β → 0(z →∞) (16)

2A more accurate estimate was obtained in [3], see below
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The functions f(β) and g(β) are determined by [3]

f(β) =
4IoI2 − (Io − 1)2 − 2I21

2I22
g(β) = β2 I0 − 1− I2

I2
(17)

The entry length is defined as the point where the central velocity has reached 99 of its terminal value.
From the expression for the axial velocity the value of β at the entry length is βo ≈ 0.69. Thus, from
Eq. (16) the ratio between the entry length and the pipe diameter is determined by

Le
D
≈ 0.057

UoD

ν
(18)

Pressure drop along the needle

Having the solution for the axial velocity and the estimation of the entry length, let us now calculate the
pressure drop along the needle. Our starting point is the Prandtl equation for the longitudinal velocity

vz∂zvz + vr∂rvz = −1

ρ

dp

dz
+
ν

r
∂r (r∂rvz) . (19)

Evaluating the latter equation in r = 0, leads to[
∂z
v2z
2

]
r=0

= −1

ρ

dp

dz
+
[ν
r
∂r (r∂rvz)

]
r=0

, (20)

where we have used the fact that the pressure gradient is constant along the cross-section of the pipe and
that both vr and ∂rvz are identically zero at the pipe axis. In order to calculate the pressure drop form
the inlet to the entrance length Le let us integrate Eq. (20) in the interval z ∈ [0;Le]. Integration yields[

v2z
2

]
r=0,z=Le

−
[
v2z
2

]
r=0,z=0

= −1

ρ
(P (Le)− P (0)) + ν

∫ Le

0

[
1

r
∂r (r∂rvz)

]
r=0

dz, (21)

Using the boundary conditions given by Eq. (5) and (6) we obtain

P (0)− P (Le) = ∆PLe =
3

2
ρU2

o + ρν

∫ Le

0

[
1

r
∂r (r∂rvz)

]
r=0

dz. (22)

The first term in the right hand side of the Eq. (22) is essentially the pressure drop due to the acceleration
of the fluid in the entrance region outside the boundary layer, while the second one accounts for the
pressure losses owing to friction. In order to calculate the integral in Eq. (22) is more convenient to
perform the integration changing, with the help of the definition in Eq. (16), the variable z to β.

ρν

∫ Le

0

[
1

r
∂r (r∂rvz)

]
r=0

dz = −ρν
∫ ∞
βo

[
1

r
∂r (r∂rvz)

]
r=0

dz

dβ
dβ ≈ 1.33ρU2

o . (23)

Pressure losses in the entrance region can be calculated accordingly,

∆PLe =

(
3

2
+ 1.33

)
ρU2

o . (24)

Let us calculate now the pressure drop from the entry length to the outlet of the needle. In this region
we have a fully developed parabolic profile, and the pressure difference can be determined by

P (Le)− P (L) = ∆PE = ρν

∫ L

Le

[
1

r
∂r (r∂rvz)

]
r=0

dz (25)
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Since we are in the region of the fully developed flow the integrand can be calculated formally taking the
limit [

1

r
∂r (r∂rvz)

]
r=0

= lim
β→0

[
1

r
∂r (r∂rvz)

]
r=0

(26)

We thus obtain

∆PE =
8ρνUo
R2

(L− Le) (27)

Substituting in the above equation the expression given by Eq. (18) for Le yields

∆PE =
128ηL

πD4
Q− 1.82ρU2

o (28)

The total pressure losses in the needle can be obtained summing the pressure differences

∆P = ∆PLe + ∆PE (29)

From Eqs. (28) and (24) we can derive the expression for the total pressure drop in the needle as

∆P =
128ηL

πD4
Q(t) +

16.16ρ

π2D4
Q2(t). (30)
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