Appendix 1 (S1): JADE algorithm

Joint Approximate Diagonalization of Eigen matrices algorithm $(J A D E)$ is blind source separation method based on diagonalization of fourth-order cumulant tensor (we call it cumulant tensor for simplicity). Cumulant tensor is a four-dimensional array whose entries are given by fourth-order cross cumulants of data:

$$
\begin{equation*}
\operatorname{cum}\left(x_{i}, x_{j}, x_{k}, x_{l}\right)=E\left\{x_{i} x_{j} x_{k} x_{l}\right\}-E\left\{x_{i} x_{j}\right\} E\left\{x_{k} x_{l}\right\}-E\left\{x_{i} x_{k}\right\} E\left\{x_{j} x_{l}\right\}-E\left\{x_{i} x_{l}\right\} E\left\{x_{j} x_{k}\right\}, \tag{1}
\end{equation*}
$$

where x_{i} represents measured mixture of source signals, $i, j, k, l=1 \ldots n$, where n is number of measured mixtures and $E\}$ is expectation of data. Desirable property of cumulants is that all cumulants of linear combinations can be obtained as linear combinations of data cumulants 1. Thus cumulants contain all fourth-order information of the data.
The cumulant tensor is a linear operator defined by the fourth-order cumulants defining linear transformation in the space of $n \times n$ matrices. We can define linear transformation on linear space of dimension $n \times n$. The i, j th element of matrix given by transformation $\mathbf{F}_{i j}$ is defined as:

$$
\begin{equation*}
\mathbf{F}_{i j}(\mathbf{M})=\sum_{k l} m_{k l} \operatorname{cum}\left(x_{i}, x_{j}, x_{k}, x_{l}\right) \tag{2}
\end{equation*}
$$

where $m_{k l}$ are the elements of transformed matrix \mathbf{M}.
Cumulant tensor as any symetric operator has an eigenvalue decomposition. An eigenmatrix of the tensor is a matrix such that:

$$
\begin{equation*}
\mathbf{F}(\mathbf{M})=\lambda \mathbf{M} \tag{3}
\end{equation*}
$$

where λ is a scalar eigenvalue.
Considering whitened data: $\mathbf{z}=\mathbf{V} \mathbf{x}=\mathbf{V A s}=\mathbf{W}^{T} \mathbf{s}$, where \mathbf{z} is whitened data, \mathbf{V} is whitening matrix, \mathbf{x} are mixed signals, \mathbf{A} is mixing matrix and \mathbf{s} are desired source signals, the cumulant tensor of \mathbf{z} has special structure that can be seen in the eigenvalue decomposition. Every matrix of the form:

$$
\begin{equation*}
\mathbf{M}=\mathbf{w}_{m} \mathbf{w}_{m}^{T} \tag{4}
\end{equation*}
$$

for $m=1, \ldots, n$ is an eigenmatrix. The vector \mathbf{w}_{m} is one of the rows of matrix \mathbf{W}. It can be shown that:

$$
\begin{equation*}
\mathbf{F}_{i j}\left(\mathbf{w}_{m} \mathbf{w}_{m}^{T}\right)=w_{m i} w_{m j} k u r t\left(s_{m}\right), \tag{5}
\end{equation*}
$$

where $k u r t\left(s_{m}\right)$ is kurtosis of corresponding source signal s_{m}. This is because all elements of cumulant tensor, whose indices are different equal zero due to independence of source signals [1. We can observe that if we knew eigenmatrices we could easily obtain independent components.
All above can be rephrased as follows: The matrix \mathbf{W} diagonalizes $\mathbf{F}(\mathbf{M})$ for any \mathbf{M}. This means that $\mathbf{W F}(\mathbf{M}) \mathbf{W}^{T}$ is diagonal. This is because matrix \mathbf{F} is diagonal for linear combination of terms of form $\mathbf{w}_{i} \mathbf{w}_{i}^{T}$ assuming that ICA model holds. Thus we can take set of different matrices $M_{i}, i=1, \ldots, k$ and try to make $\mathbf{W F}(\mathbf{M})_{i} \mathbf{W}^{T}$ as diagonal as possible. In real situation the model does not hold exactly and errors in data make the exact diagonalization impossible.
During diagonalization one needs to measure diagonality of matrix $\mathbf{W F}(\mathbf{M})_{i} \mathbf{W}^{T}$, this can be measured i.e. using the following measure [1:

$$
\begin{equation*}
J_{J A D E}(\mathbf{W})=\sum_{i}\left\|\operatorname{diag}\left(\mathbf{W F}(\mathbf{M})_{i} \mathbf{W}^{T}\right)\right\|^{2} \tag{6}
\end{equation*}
$$

where $\|\operatorname{diag}()\|^{2}$ means sum of squares of the diagonal.
The crucial is selection of set of matrices \mathbf{M}_{i}. One possible and natural choice is to take the eigenmatrices of the cumulant tensor, which is exactly what JADE algorithm does [1].

References

1. Hyvärinen A, Karhunen J, Oja E (2001) Independent Component Analysis. Wiley.
