Appendix 1 (S1): JADE algorithm

Joint Approximate Diagonalization of Eigen matrices algorithm(JADE) is blind source separation method based on diagonalization of fourth-order cumulant tensor (we call it cumulant tensor for simplicity). Cumulant tensor is a four-dimensional array whose entries are given by fourth-order cross cumulants of data:

$$cum(x_i, x_j, x_k, x_l) = E\{x_i x_j x_k x_l\} - E\{x_i x_j\} E\{x_k x_l\} - E\{x_i x_k\} E\{x_j x_l\} - E\{x_i x_l\} E\{x_j x_k\}, \quad (1)$$

where x_i represents measured mixture of source signals, i, j, k, l = 1...n, where n is number of measured mixtures and $E\{\}$ is expectation of data. Desirable property of cumulants is that all cumulants of linear combinations can be obtained as linear combinations of data cumulants [1]. Thus cumulants contain all fourth-order information of the data.

The cumulant tensor is a linear operator defined by the fourth-order cumulants defining linear transformation in the space of $n \times n$ matrices. We can define linear transformation on linear space of dimension $n \times n$. The *i*, *j*th element of matrix given by transformation \mathbf{F}_{ij} is defined as:

$$\mathbf{F}_{ij}(\mathbf{M}) = \sum_{kl} m_{kl} cum(x_i, x_j, x_k, x_l), \qquad (2)$$

where m_{kl} are the elements of transformed matrix **M**.

Cumulant tensor as any symetric operator has an eigenvalue decomposition. An eigenmatrix of the tensor is a matrix such that:

$$\mathbf{F}(\mathbf{M}) = \lambda \mathbf{M},\tag{3}$$

where λ is a scalar eigenvalue.

Considering whitehed data: $\mathbf{z} = \mathbf{V}\mathbf{x} = \mathbf{V}\mathbf{A}\mathbf{s} = \mathbf{W}^T\mathbf{s}$, where \mathbf{z} is whitehed data, \mathbf{V} is whitehing matrix, \mathbf{x} are mixed signals, \mathbf{A} is mixing matrix and \mathbf{s} are desired source signals, the cumulant tensor of \mathbf{z} has special structure that can be seen in the eigenvalue decomposition. Every matrix of the form:

$$\mathbf{M} = \mathbf{w}_m \mathbf{w}_m^T,\tag{4}$$

for m = 1, ..., n is an eigenmatrix. The vector \mathbf{w}_m is one of the rows of matrix \mathbf{W} . It can be shown that:

$$\mathbf{F}_{ij}(\mathbf{w}_m \mathbf{w}_m^T) = w_{mi} w_{mj} kurt(s_m), \tag{5}$$

where $kurt(s_m)$ is kurtosis of corresponding source signal s_m . This is because all elements of cumulant tensor, whose indices are different equal zero due to independence of source signals [1]. We can observe that if we knew eigenmatrices we could easily obtain independent components.

All above can be rephrased as follows: The matrix \mathbf{W} diagonalizes $\mathbf{F}(\mathbf{M})$ for any \mathbf{M} . This means that $\mathbf{WF}(\mathbf{M})\mathbf{W}^T$ is diagonal. This is because matrix \mathbf{F} is diagonal for linear combination of terms of form $\mathbf{w}_i\mathbf{w}_i^T$ assuming that ICA model holds. Thus we can take set of different matrices M_i , i = 1, ..., k and try to make $\mathbf{WF}(\mathbf{M})_i\mathbf{W}^T$ as diagonal as possible. In real situation the model does not hold exactly and errors in data make the exact diagonalization impossible.

During diagonalization one needs to measure diagonality of matrix $\mathbf{WF}(\mathbf{M})_i \mathbf{W}^T$, this can be measured i.e. using the following measure [1]:

$$J_{JADE}(\mathbf{W}) = \sum_{i} ||diag(\mathbf{WF}(\mathbf{M})_{i}\mathbf{W}^{T})||^{2},$$
(6)

where $||diag()||^2$ means sum of squares of the diagonal.

The crucial is selection of set of matrices \mathbf{M}_i . One possible and natural choice is to take the eigenmatrices of the cumulant tensor, which is exactly what JADE algorithm does [1].

References

1. Hyvärinen A, Karhunen J, Oja E (2001) Independent Component Analysis. Wiley.