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A reaction-diffusion (RD) model for the transport of ClO2  

in a medium containing reactive proteins   
 

A general RD equation for ClO2  
 The following partial differential equation (usually called reaction-diffusion equation 

[1]) holds for the local ClO2 concentration c (c is a function of the time t and of the space 

coordinates) when ClO2 diffuses through a medium containing various components which can 

react with it: 
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In equation (S1) 
t

c




is the time derivative of the local ClO2 concentration, Ri is the rate of the 

ClO2 consumption due to the i-th reaction at the same location, N is the number of the various 

ClO2 consuming reactions,  D is the diffusion coefficient of  ClO2 in the medium, and c2  is 

the Laplacian of c, which, applying a three dimensional Descartes coordinate system with 

spatial coordinates x, y, and z, can be written in the following form: 
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Equation (S1) is a balance equation for ClO2 where the two terms on the right hand side stand, 

successively, for the effect of the chemical reactions and of diffusional transport [1]. 

 

A simplified RD equation for ClO2. The effective substrate concentration 
 

As it was discussed previously there are four different amino acids and amino acid 

residues which can react with ClO2 rapidly. In living tissue, however, there are even more 

chemical components [2] which are also able to react with ClO2 by a slower but still 

measurable rate.  A simple model cannot deal with all the ClO2 reducing substrates of a 

complex biological system individually. To simplify the model the concept of the effective 

substrate concentration s will be introduced, which represents the local ClO2 reducing 

capacity of all the various substrates in an integrated form. 

To develop a definition for s, let us write the stoichiometry of the i-th reaction (the 

reaction of the i-th substrate Si with ClO2) in the following simplified form: 
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iClO2 + Si  inert products  .  (R1) 

The stoichiometric coefficient i shows how many ClO2 moles can be reduced by one mole of 

Si.  For example, when the substrate contains an SH (sulfhydryl or thiol) group as cysteine 

does, the stoichiometric equation around pH 7 for a fast initial reaction [3] can be written as 

2 ClO2 + 2 CSH  CSSC + 2 ClO2

 + 2 H

+ 
 , (R2) 

where CSH stands for cysteine and CSSC is its oxidation product, a disulfide, called cystine. 

(One of the products, ClO2

  (chlorite) is actually an intermediate because it can react further 

with cysteine, but only with a rate which is 6 orders of magnitude slower than the first step of 

the ClO2/CSH reaction [3].)  Thus, if we regard only the fast initial reaction then CSH = 1, 

because 1 mole CSH removes 1 mole ClO2 in (R2).  For tyrosine [4] and tryptophane [5], a 

simplified scheme would suggest TYR = TRP = 2. Even in these relatively simple cases of pure 

amino acids, however, the effect of various parallel and consecutive reactions [3,4,5] can 

make it rather difficult to calculate  very precisely, not to mention when these amino acids 

are residues in proteins or peptides.  

 For the definition of s, however, it is enough to assume that there is such a 

stoichiometric coefficient for each component. Then s, the effective substrate concentration of 

the medium, can be defined as a weighted sum of the individual si substrate concentrations, 

where i plays the role of a „weight factor”:   
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Moreover, as a further simplification, it will be assumed that Ri, the rate of the i-th reaction, 

follows mass action kinetics, that is the rate of ClO2 reduction due to the i-th reaction can be 

written as a bilinear function of si and c: 

cskR iiii  ,  (S4) 

where ki is the second order rate constant of the i-th reaction. Next, introducing an „effective 

rate constant” k by the definition: 
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equation (S1) has the following simple form: 
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Simplified balance equations for fixed substrates 

We will also assume all the substrates are fixed to the medium, and it is only the ClO2 

which is able to diffuse. This approximation is reasonable, if the RD medium is a human or an 

animal tissue having a cellular structure. Amino acid residues are usually parts of large 

protein molecules, the diffusion of which is very slow. Smaller peptides – especially 

glutathione – and free amino acids can diffuse but only within a cell because the outer 

membrane of the cell is not permeable for them. Thus, from the point of a long range transport 

through an animal or human tissue, even these small substrates can be regarded as fixed ones. 

This way, the general RD equation for a substrate  
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can be simplified to  
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as all Di= 0. If we multiply both sides of equation (S8) with i, and then summarize all such 

type of equations then we obtain the balance equation for the effective substrate concentration 

in the following simple form: 
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When the medium contains the very reactive SH groups in a significant concentration then it 

can be proven that (S6) and (S9) can be simplified further: the form of the equations remains 

the same but the effective rate constant can be approximated as  

SHkk    (S10) 

where kSH is the rate constant of the ClO2 – SH group reaction, and the effective substrate 

concentration is  

SHss    (S11) 

where sSH is the concentration of the sulfhydryl groups in the medium.  

 

Approximate solutions of the simplified RD equations 

 If the simplified RD equations (S6) and (S9) are accepted as a starting point, then the 

logical next step is to find a solution for these equations, that is to find the functions 

c=c(t,x,y,z) and s=s(t,x,y,z) while taking into account the given initial and boundary 

conditions. However, to find exact analytical solutions for nonlinear partial differential 

equations is usually not possible, and in this work we did not want to apply numerical 

solutions either. Thus, our aim here should be to find and apply approximate solutions with 

simple mathematical formulas which can be easily applied for the interpretation of our 

experimental results.    

 One type of approximation can be applied when the rate constant k is very high, as in 

the case of substrates containing SH groups or tyrosine residues. In this case, a sharp reaction 

front propagates through the medium, and the solution of the reaction-diffusion problem can 

be approximated with „parabolic rate law” type equations. 

 The other approximation is valid for low k values. In this case, the smooth 

concentration profiles are determined mostly by the diffusion, and modified only slightly by 

the reaction which can be distributed in the whole medium (no sharp front). When the 

medium is finite, as in the case of a membrane, an approximate steady state can be reached 

after some transition time.  

 

 

Quasi steady state solution of the RD equations  

when the ClO2 – substrate reaction is fast 

 
 Preconditions of the parabolic rate law 

The so-called parabolic rate law [6] holds for certain reaction-diffusion problems 

where the rate limiting step of an otherwise fast irreversible reaction (R3) 

C + S  P  (R3) 

between the mobile reactant C and the fixed substrate S giving the product P is not the 

reaction itself but the diffusion of the reactant C to reach S. In our case C is ClO2 and S is the 

reactive side group of an amino acid. The most important reactant in this respect is the SH 

group of the cysteine [3]. 
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 An important player in the process is the medium M immobilizing the substrate S but 

permeable for C at the same time. In our case the medium M is the hydrogel of the living 

tissues which is permeable for ClO2. Lipid membranes of the cells in the tissue do not form 

barriers for ClO2 either, as it is very soluble in organic phases as well.  The reactive amino 

acids, on the other hand – being mostly building blocks of various proteins – are immobilized 

in that hydrogel.    

 

The parabolic rate law in one dimension for a slab of thickness d 
The simplest geometry giving a parabolic rate law is a situation where the 

concentration of C is kept constant, [C] = c0 at the flat boundary of a slab e.g. at its left hand 

side, while [C] = 0 at the right hand side of the slab. The material of the slab is a medium 

containing the fixed substrate S in a homogeneous initial concentration s0 (see Fig. S1). The 

thickness of the slab is d.  

 

Figure S1.  Schematic ClO2 and substrate concentration profiles in a hydrogel slab of 

thickness d at an intermediate time t ( 0 < t < T ). p is the penetration depth. 

 

 
 

When C is ClO2 and ClO2 is fed from one side of the slab, a sharp reaction front 

propagates from one side to the other. There is a measurable ClO2 concentration only behind 

the front thus disinfection of the slab is completed only when the reaction front reaches the 

other side of the slab. The characteristic time T required for that can be calculated by the 

parabolic rate law. The result: 
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That is the characteristic time T is proportional with the square of the thickness for a given set 

of non-geometrical parameters s0, c0, and D. Here D is the diffusion coefficient of C in M. 

Alternatively, the penetration depth p of a sharp reaction is proportional with the square root 

of the time t: 
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Naturally the above formula gives the right p value only when Tt  or when d is infinitely 

long. 
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Derivation of the parabolic rate law for a slab (or membrane) 
 

As the concentration profile in Fig. S1 shows, it is assumed that the reaction occurs 

only in the plane x = p. This can be a good approximation if most of the reaction takes place 

in a narrow reaction zone much thinner than d (which is valid for a fast reaction combined 

with a relatively slow diffusion).   

The ClO2 current IC across the slab with cross-section A in the region 0 < x < p can be given 

by Fick’s law of diffusion: 

dx

dc
DAIC   (S14) 

(IC is positive when the ClO2 flow points from left to right in Fig. S1).  

In a quasi steady state  
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we can assume a linear concentration profile and so  
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Next we can apply the component balance. If NS  is the mole number of the remaining S 

molecules in the volume V  (NS = s0V) then we can write  
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which is the parabolic rate law in one dimension for a slab. 

 

 

The parabolic rate law for an infinitely long cylinder of radius R 
 

In this case the characteristic time T is when the sharp reaction front starting from the 

surface propagating inward reaches the symmetry axis of the cylinder. 
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We shall regard concentration distributions with cylindrical symmetry where the local 

concentration c is a function of the radius r only – that is c=c(r) – and independent of the 

azimuthal angle   and the height z. In an analogy to the one dimensional case  
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where H is the height of the cylinder. We will assume a quasi steady state concentration in the 

zone of  R > r > R–p  where p is the penetration depth. If  IC is independent of r in this region 

then const
dr

dc
r  . Regarding the boundary conditions: c(R–p) = 0 and c(R) = c0 the steady 

state concentration profile in this region can be written as: 
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and  
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Thus, with the above quasi steady state approximation  
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The negative sign shows that IC points inward: it is negative when 
dr

dc
> 0. 

Next we can apply the component balance. If NS  is the mole number of the remaining S 

molecules in the volume V  (NS = s0V) then we can write  
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The parabolic rate law in three dimensions for a sphere of radius R 
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We shall regard concentration distributions with spherical symmetry where the local 

concentration c is a function of the radius r only – that is c=c(r) – and independent of the 

azimuthal angle   and the polar angle  . In an analogy to the one dimensional case,  

dr

dc
Dr
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dc
DAIC  24 . (S25) 

We will assume a quasi steady state concentration in the zone of R > r > R–p where p is the 

penetration depth. If IC is independent of r in this region then const
dr

dc
r 2  . Regarding the 

boundary conditions: c(R–p) = 0 and c(R) = c0 the steady state concentration profile in this 

region can be written as: 
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and 
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Then with the quasi steady state approximation: 
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The negative sign shows again that IC points inward: it is negative when 
dr

dc
>0. 

Next we can apply the component balance. If NS  is the mole number of the remaining S 

molecules in the volume V  (NS = s0V), then we can write  
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 Quasi steady state solution of the RD equation in one dimension  

when the ClO2 – substrate reaction is slow 
 

The one dimensional reaction-diffusion equation (RDE) in a steady state is 
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0
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where r is the rate of the reaction (R4)  

22 PSC   (R4) 

between the mobile reactant C and the fixed substrate S2 giving the product P2 

22 sckr  .  (S31) 

In this case, however, it will be assumed that the rate of the reaction is relatively slow and the 

substrate S2 is in such a great excess that its consumption can be neglected during the time of 

the measurement. That is 
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and the steady state RDE: 
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If we introduce the following notation 
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then the steady state RDE has the following form: 
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The general solution of the above differential equation is 
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where the integration constants c1 and c2 can be calculated from the boundary conditions: 
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The solution regarding the above boundary conditions: 
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If the reaction is very slow, then the approximation  
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can be applied and the steady state concentration profile obtained this way is the linear 

concentration profile valid for pure diffusion in the absence of any chemical reaction: 
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The current density j of component C leaving the slab is maximal when there is no chemical 

reaction:   
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The current density is smaller if there is a slow reaction in the slab: 
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Finally, the ratio of the current densities is: 
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Table S1 

Data depicted in Figure 2.  

V is the cumulative volume of the 0.01 M Na2S2O3 titrant added until time t. 

 

1st exp 2nd exp  

t / s t / s V / ml 

0 0 0 

540 140 0.5 

630 202 1 

695 252 1.5 

752 294 2 

809 326 2.5 

855 366 3 

876 403 3.5 

915 440 4 

955 476 4.5 

995 507 5 

1038 542 5.5 

1078 575 6 

1118 608 6.5 

1153 642 7 

1192 675 7.5 

1226 708 8 

1262 747 8.5 

1299 782 9 

1342 814 9.5 

1374 847 10 

1412 880 10.5 

1450 908 11 

1480 940 11.5 

1518 972 12 

1552 1004 12.5 

1588 1038 13 
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Table S2 

Data depicted in Figure 3.  

V is the cumulative volume of the 0.01 M Na2S2O3 titrant added until time t. 

 

1st day 2nd day 3rd day  

t / s t / s t / s V / ml 

0 0 0 0 

2490 530 250 0.5 

2894 655 346 1 

3198 750 418 1.5 

3456 837 493 2 

3670 916 568 2.5 

3882 991 639 3 

4080 1069 713 3.5 

4273 1140 777 4 

4452 1216 856 4.5 

4636 1285 928 5 

4812 1354 1003 5.5 

4993 1420 1076 6 

5171 1487 1147 6.5 

5344 1556 1216 7 

5522 1618 1286 7.5 

5704 1680 1358 8 

5889 1743 1427 8.5 

6075 1810 1501 9 

6266 1877 1579 9.5 

6472 1942 1655 10 

6658 2008 1734 10.5 

6852 2077 1819 11 

7059 2146 1894 11.5 

 2218 1978 12 

 2280 2061 12.5 

 2346 2144 13 

  2235 13.5 
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