
Supplementary �le

Model analysis: Supplementary �le S1

Positivity and boundedness of solutions

We show that the model system de�ned by the system of equations

dS(t)

dt
= Λ−

(

βsIs(t) + βcIc(t)

N
+ βenEn(t)

)

S(t)− µS(t),

dE(t)

dt
=

(

βsIs(t) + βcIc(t)

N
+ βenEn(t)

)

S(t)− (σe + µ)E(t),

dIs(t)

dt
= σeE(t)− (σs + µ)Is(t), (S.1)

dIc(t)

dt
= σsIs(t)− (σc + µ)Ic(t),

where

dN(t)

dt
= Λ− µN(t)− σcIc(t) (S.2)

is well-posed from a mathemati
al and biologi
al stand-point and that solutions to the system are

always positive and bounded within the region de�ned by

Φ ⊂ R
4
+, where Φ =

{

(S,E, Is, Ic) ∈ R
4
+ : 0 ≤ S + E + Is + Ic = N ≤

Λ

µ

}

.

First, we note that all model parameters and variables are non-negative. If initial 
onditions of

the form (S(0), E(0), Is(0), Ic(0)) = (S0, E0, I0s , I
0
c , ) for system (S.1) are provided in Φ, then using

standard te
hniques from [1, 2℄, we 
an show that this system has a unique solution in Φ, whi
h
depends 
ontinuously on the initial 
onditions.

The dynami
s of the total 
attle population is governed by the equation

dN(t)

dt
= Λ− µN(t)− σcIc(t),

≤ Λ− µN(t).

Therefore,

N(t) ≤
Λ

µ
+

(

N(0)−
Λ

µ

)

e−µt,

≤
Λ

µ
if N(0) ≤

Λ

µ
,

where N(0) = N0
is the initial size of the total 
attle population. Thus, Φ is positively-invariant

and attra
ting with respe
t to system (S.1), and so the system is well-posed in Φ.

Basi
 reprodu
tion number

We use the next generation matrix method [3, 4℄ to 
ompute the basi
 reprodu
tion number of our

model. By this method, the basi
 reprodu
tion number of our model is the spe
tral radius of the

next generation matrix

FV
−1 =















βsσe

B1B2
+ βcσe σs

B1B2B3
+ βeΛσe (αsB3+αcσs)

µB1B2B3ν
βs

B2
+ βcσs

B2B3
+ βeΛ(αsB3+αcσs)

µB2B3ν
βc

B3
+ βeΛαc

µB3ν
βeΛ
µν

0 0 0 0

0 0 0 0

0 0 0 0















,
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where

B1 = σe + µ,B2 = σs + µ,B3 = γ + µ,

F =















0 βs βc
βenΛ
µ

0 0 0 0

0 0 0 0

0 0 0 0















,V =















(

σe + µ 0 0 0

−σe σs + µ 0 0

0 −σs γ + µ 0

0 −αs −αc ν















.

That is,

R0 = ρ(FV
−1) =

σe (βsµB3ν + βcσs µ ν + βeΛαsB3 + βeΛαcσs)

µB1B2B3ν

=
σe(βenΛ(γs(γ + µ) + γcσs) + µν(βs(γ + µ) + βcσs))

µν(σe + µ)(σs + µ)(γ + µ)
.

Note that the matrix F is made up of new infe
tions, while the matrix V 
onsists of terms depi
t-

ing the transfer of infe
tion from one 
lass to another. Also, observe that the value of the basi


reprodu
tion obtained through the next generation operator approa
h is the same as that obtained

by seeking 
onditions under whi
h a trans
riti
al bifur
ation exists.

Existen
e and stability of equilibrium solutions

The equilibrium solutions of system (S.1) together with the equation

dEn(t)

dt
= γsIs(t) + γcIc(t)− νEn(t), (S.3)

are obtained by setting the right hand sides of the equations to zero and solving the resulting

system of algebrai
 equations for the variables. This pro
ess indi
ates that equations (S.1) and

(S.3) has a disease-free equilibrium solution E0 =
(

Λ
µ
, 0, 0, 0, Λ

µ
, 0
)

when R0 ≤ 1 and a unique stable

endemi
 equilibrium solution Ee = (S∗, E∗, I∗s , I
∗

c , N
∗, E∗

n), whi
h 
an be expressed in terms of I∗c ,

the endemi
 equilibrium value of the 
lini
ally si
k 
attle as follows:

S∗ =
Λσeσsν(Λ− σcI

∗

c )

Λµνσeσs + (µν(σe + µ)(σs + µ)(γ + µ)R0 − σcσe(βen(γs(σc + µ) + σsγc)I∗c + µσsν))I∗c
,

E∗ =
(σs + µ)(σc + µ)I∗c

σsσe
, I∗s =

(σc + µ)I∗c
σs

, N∗ =
Λ− σcI

∗

c

µ
, E∗

n =
(γs(σc + µ) + γcσs)I

∗

c

σsν
,

with I∗c given by the equation

(I∗2c + a1I
∗

c + a0) = 0, (S.4)

where

a1 = −
µνσs

βen(γs(σc + µ) + γcσs)

(

Λσeβen(γs(σc + µ) + γcσs)

µν(σe + µ)(σs + µ)(σc + µ)
+

(σe + µ)(σs + µ)(σc + µ)R0

σeσsσc
− 1

)

,

a0 =
Λµνσeσs(R0 − 1)

βenσc(γs(σc + µ) + γcσs)
.

Equation (S.4) indi
ates that E0, always exists, and that when R0 > 1, we 
an have one epidemio-

logi
ally feasible endemi
 equilibrium solution. This endemi
 equilibrium solution 
an be 
omputed

in 
losed form by solving the quadrati
 portion of equation (S.4) in R+. The existen
e of an endemi


equilibrium solution depi
ts persisten
e of JD within a 
attle population.
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Theorem 1. The DFE of the system given by equations (S.1) is both lo
ally and globally asymp-

toti
ally stable when R0 < 1. When R0 > 1, E0 is unstable and there exists an endemi
 equilibrium

solution Ee

Proof. We establish the proof of Theorem 1. From the 
al
ulations leading to the basi
 reprodu
tion

number, it is 
lear that the disease-free equilibrium is lo
ally and asymptoti
ally stable when R0 < 1.
We now use the next generation matrix approa
h to establish the global stability of the disease-

free steady state. To a
hieve this, we set X = S, Z = (E, Is, Ic, En) and split equations (S.1)-(S.3)

into two subsystems � an equation in X, or a disease-free equation and a 
olle
tion of four equations

in Z, 
onsisting of the se
ond, third and fourth equations of system (S.1) and Equation (S.3) as

follows:

Ẋ = F (X, 0),

Ż = G(X,Z).

Clearly, the disease-free steady state E0 is lo
ally and asymptoti
ally stable when R0 < 1 and

the only equilibrium solution (X∗, 0), of the disease-free equation is globally and asymptoti
ally

stable. Hen
e, by the approa
h in [5℄ , all we need to do in order to establish the global stability

of the disease-free equilibrium is to show that Ĝ(X,Z) = DZ(X
∗, 0) − G(X,Z) ≥ 0 in Φ, where

DZ(X
∗, 0) −G(X,Z) is the Ja
obian of G evaluated at the disease-free equilibrium (X∗, 0). But

Ĝ(X,Z) =











(βsIs + βcIc)
(

1− S
N

)

+ βenEn

(

Λ
µ
− S

)

0
0
0











.

Sin
e 0 < S ≤ N ≤ Λ
µ
, (βsIs + βcIc)

(

1− S
N

)

+ βenEn

(

Λ
µ
− S

)

≥ 0. Clearly, Ĝ(X,Z) ≥ 0. Thus,

the disease-free equilibrium is globally and asymptoti
ally stable.

Spe
ial 
ase, σc = 0

Assuming that JD does not kill 
attle, the basi
 reprodu
tion number for the system redu
es to

R0 =
σe(βenΛ(γsµ+ γcσs) + µν(βsµ+ βcσs))

µ2ν(σe + µ)(σs + µ)
, (S.5)

and the equilibrium solutions now be
ome E0 =
(

Λ
µ
, 0, 0, 0, Λ

µ
, 0
)

and Ee = (S∗, E∗, I∗s , I
∗

c , N
∗, E∗

n),

where

S∗ =
Λ2σsνµσe(σe + µ)(σs + µ)R0

(µν(βsµ+ βcσs) + βen(γsµ+ γcσs)Λ)Λσs(R0 − 1) + σsµνΛµσe(σe + µ)(σs + µ)R0
,

E∗ =
(σs + µ)µ

σsσe

Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
, I∗s =

µ

σs

Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
,

I∗c =
Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
, E∗

n =
γsµ+ γcσs

σsν

Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
, N∗ =

Λ

µ
.

This indi
ates that the endemi
 equilibrium Ee only exists when R0 > 1. Note that Ee simpli�es

to E0 when R0 ≤ 1. Following standard nonlinear dynami
s te
hniques it 
an easily be shown that

the E0 is globally and asymptoti
ally stable when R0 < 1 and unstable when R0 > 1. It 
an also

be shown that Ee is stable when R0 > 1.

Additional results: Supplementary �le S2

See Figure S1, and Tables S1 and S2 for additional farm (µ = 0.2) JD predi
ted dynami
s and

ratios.
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Delay di�erential equation (DDE) model: Supplementary �le S3

The transmission model is modi�ed into an DDE model and the equations for E(t), Is(t), and Ic(t)
take the forms:

dE(t)

dt
=

(

βsIs(t) + βcIc(t)

N(t)
+ βenEn(t)

)

S(t)− σeE(t− τ1)− µE(t),

dIs(t)

dt
= σeE(t− τ1)− σsIs(t− τ2) + µIs(t), (S.6)

dIc(t)

dt
= σsIs(t− τ2)− (σc + µ)Ic(t).

See Table S3 for the parameters of the DDE model.
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Supplementary tables

Table S1: Ratios for animal populations in di�erent stages of JD under di�erent time

regions. Approximate ratios of animals in the Silent, Sub
lini
al, and Clini
al stages at a parti
ular

time in a given region. These ratios show that the JD I
eberg phenomenon 
annot be observed.

Approximate 
attle population R1 R2 R3 R4

at ea
h time point in Region

Ic 25.0 100.0 125.0 100.0

Is 50.0 200.0 150.0 150.0

E 25.0 50.0 25.0 25.0

Ratio (Ic : Is : E) 1:2:1 2:4:1 5:6:1 4:6:1
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Table S2: Ratios for animal populations in di�erent stages of JD under di�erent time

regions using estimated parameters. Approximate ratios of animals in the Silent, Sub
lini
al,

and Clini
al stages at a parti
ular time in a given region with µ = 0.2. These ratios show that the

JD I
eberg phenomenon 
annot be observed.

Approximate 
attle population R1 R2 R3 R4

at ea
h time point in Region

Ic 25.0 50.0 50.0 50.0

Is 50.0 100.0 75.0 75.0

E 25.0 25.0 25.0 25.0

Ratio (Ic : Is : E) 1:2:1 2:4:1 2:3:1 2:3:1

Table S3: Time delays in the silent and sub
lini
al stages.

Time delay Stage of infe
tion Delay interval

τ1 Silent stage delay 0-0.5 years

τ2 Sub
lini
al stage delay 2-10 years
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