
Supplementary �le

Model analysis: Supplementary �le S1

Positivity and boundedness of solutions

We show that the model system de�ned by the system of equations

dS(t)

dt
= Λ−

(

βsIs(t) + βcIc(t)

N
+ βenEn(t)

)

S(t)− µS(t),

dE(t)

dt
=

(

βsIs(t) + βcIc(t)

N
+ βenEn(t)

)

S(t)− (σe + µ)E(t),

dIs(t)

dt
= σeE(t)− (σs + µ)Is(t), (S.1)

dIc(t)

dt
= σsIs(t)− (σc + µ)Ic(t),

where

dN(t)

dt
= Λ− µN(t)− σcIc(t) (S.2)

is well-posed from a mathematial and biologial stand-point and that solutions to the system are

always positive and bounded within the region de�ned by

Φ ⊂ R
4
+, where Φ =

{

(S,E, Is, Ic) ∈ R
4
+ : 0 ≤ S + E + Is + Ic = N ≤

Λ

µ

}

.

First, we note that all model parameters and variables are non-negative. If initial onditions of

the form (S(0), E(0), Is(0), Ic(0)) = (S0, E0, I0s , I
0
c , ) for system (S.1) are provided in Φ, then using

standard tehniques from [1, 2℄, we an show that this system has a unique solution in Φ, whih
depends ontinuously on the initial onditions.

The dynamis of the total attle population is governed by the equation

dN(t)

dt
= Λ− µN(t)− σcIc(t),

≤ Λ− µN(t).

Therefore,

N(t) ≤
Λ

µ
+

(

N(0)−
Λ

µ

)

e−µt,

≤
Λ

µ
if N(0) ≤

Λ

µ
,

where N(0) = N0
is the initial size of the total attle population. Thus, Φ is positively-invariant

and attrating with respet to system (S.1), and so the system is well-posed in Φ.

Basi reprodution number

We use the next generation matrix method [3, 4℄ to ompute the basi reprodution number of our

model. By this method, the basi reprodution number of our model is the spetral radius of the

next generation matrix

FV
−1 =















βsσe

B1B2
+ βcσe σs

B1B2B3
+ βeΛσe (αsB3+αcσs)

µB1B2B3ν
βs

B2
+ βcσs

B2B3
+ βeΛ(αsB3+αcσs)

µB2B3ν
βc

B3
+ βeΛαc

µB3ν
βeΛ
µν

0 0 0 0

0 0 0 0

0 0 0 0















,

1



where

B1 = σe + µ,B2 = σs + µ,B3 = γ + µ,

F =















0 βs βc
βenΛ
µ

0 0 0 0

0 0 0 0

0 0 0 0















,V =















(

σe + µ 0 0 0

−σe σs + µ 0 0

0 −σs γ + µ 0

0 −αs −αc ν















.

That is,

R0 = ρ(FV
−1) =

σe (βsµB3ν + βcσs µ ν + βeΛαsB3 + βeΛαcσs)

µB1B2B3ν

=
σe(βenΛ(γs(γ + µ) + γcσs) + µν(βs(γ + µ) + βcσs))

µν(σe + µ)(σs + µ)(γ + µ)
.

Note that the matrix F is made up of new infetions, while the matrix V onsists of terms depit-

ing the transfer of infetion from one lass to another. Also, observe that the value of the basi

reprodution obtained through the next generation operator approah is the same as that obtained

by seeking onditions under whih a transritial bifuration exists.

Existene and stability of equilibrium solutions

The equilibrium solutions of system (S.1) together with the equation

dEn(t)

dt
= γsIs(t) + γcIc(t)− νEn(t), (S.3)

are obtained by setting the right hand sides of the equations to zero and solving the resulting

system of algebrai equations for the variables. This proess indiates that equations (S.1) and

(S.3) has a disease-free equilibrium solution E0 =
(

Λ
µ
, 0, 0, 0, Λ

µ
, 0
)

when R0 ≤ 1 and a unique stable

endemi equilibrium solution Ee = (S∗, E∗, I∗s , I
∗

c , N
∗, E∗

n), whih an be expressed in terms of I∗c ,

the endemi equilibrium value of the linially sik attle as follows:

S∗ =
Λσeσsν(Λ− σcI

∗

c )

Λµνσeσs + (µν(σe + µ)(σs + µ)(γ + µ)R0 − σcσe(βen(γs(σc + µ) + σsγc)I∗c + µσsν))I∗c
,

E∗ =
(σs + µ)(σc + µ)I∗c

σsσe
, I∗s =

(σc + µ)I∗c
σs

, N∗ =
Λ− σcI

∗

c

µ
, E∗

n =
(γs(σc + µ) + γcσs)I

∗

c

σsν
,

with I∗c given by the equation

(I∗2c + a1I
∗

c + a0) = 0, (S.4)

where

a1 = −
µνσs

βen(γs(σc + µ) + γcσs)

(

Λσeβen(γs(σc + µ) + γcσs)

µν(σe + µ)(σs + µ)(σc + µ)
+

(σe + µ)(σs + µ)(σc + µ)R0

σeσsσc
− 1

)

,

a0 =
Λµνσeσs(R0 − 1)

βenσc(γs(σc + µ) + γcσs)
.

Equation (S.4) indiates that E0, always exists, and that when R0 > 1, we an have one epidemio-

logially feasible endemi equilibrium solution. This endemi equilibrium solution an be omputed

in losed form by solving the quadrati portion of equation (S.4) in R+. The existene of an endemi

equilibrium solution depits persistene of JD within a attle population.
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Theorem 1. The DFE of the system given by equations (S.1) is both loally and globally asymp-

totially stable when R0 < 1. When R0 > 1, E0 is unstable and there exists an endemi equilibrium

solution Ee

Proof. We establish the proof of Theorem 1. From the alulations leading to the basi reprodution

number, it is lear that the disease-free equilibrium is loally and asymptotially stable when R0 < 1.
We now use the next generation matrix approah to establish the global stability of the disease-

free steady state. To ahieve this, we set X = S, Z = (E, Is, Ic, En) and split equations (S.1)-(S.3)

into two subsystems � an equation in X, or a disease-free equation and a olletion of four equations

in Z, onsisting of the seond, third and fourth equations of system (S.1) and Equation (S.3) as

follows:

Ẋ = F (X, 0),

Ż = G(X,Z).

Clearly, the disease-free steady state E0 is loally and asymptotially stable when R0 < 1 and

the only equilibrium solution (X∗, 0), of the disease-free equation is globally and asymptotially

stable. Hene, by the approah in [5℄ , all we need to do in order to establish the global stability

of the disease-free equilibrium is to show that Ĝ(X,Z) = DZ(X
∗, 0) − G(X,Z) ≥ 0 in Φ, where

DZ(X
∗, 0) −G(X,Z) is the Jaobian of G evaluated at the disease-free equilibrium (X∗, 0). But

Ĝ(X,Z) =











(βsIs + βcIc)
(

1− S
N

)

+ βenEn

(

Λ
µ
− S

)

0
0
0











.

Sine 0 < S ≤ N ≤ Λ
µ
, (βsIs + βcIc)

(

1− S
N

)

+ βenEn

(

Λ
µ
− S

)

≥ 0. Clearly, Ĝ(X,Z) ≥ 0. Thus,

the disease-free equilibrium is globally and asymptotially stable.

Speial ase, σc = 0

Assuming that JD does not kill attle, the basi reprodution number for the system redues to

R0 =
σe(βenΛ(γsµ+ γcσs) + µν(βsµ+ βcσs))

µ2ν(σe + µ)(σs + µ)
, (S.5)

and the equilibrium solutions now beome E0 =
(

Λ
µ
, 0, 0, 0, Λ

µ
, 0
)

and Ee = (S∗, E∗, I∗s , I
∗

c , N
∗, E∗

n),

where

S∗ =
Λ2σsνµσe(σe + µ)(σs + µ)R0

(µν(βsµ+ βcσs) + βen(γsµ+ γcσs)Λ)Λσs(R0 − 1) + σsµνΛµσe(σe + µ)(σs + µ)R0
,

E∗ =
(σs + µ)µ

σsσe

Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
, I∗s =

µ

σs

Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
,

I∗c =
Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
, E∗

n =
γsµ+ γcσs

σsν

Λσs(R0 − 1)

µσe(σe + µ)(σs + µ)R0
, N∗ =

Λ

µ
.

This indiates that the endemi equilibrium Ee only exists when R0 > 1. Note that Ee simpli�es

to E0 when R0 ≤ 1. Following standard nonlinear dynamis tehniques it an easily be shown that

the E0 is globally and asymptotially stable when R0 < 1 and unstable when R0 > 1. It an also

be shown that Ee is stable when R0 > 1.

Additional results: Supplementary �le S2

See Figure S1, and Tables S1 and S2 for additional farm (µ = 0.2) JD predited dynamis and

ratios.
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Delay di�erential equation (DDE) model: Supplementary �le S3

The transmission model is modi�ed into an DDE model and the equations for E(t), Is(t), and Ic(t)
take the forms:

dE(t)

dt
=

(

βsIs(t) + βcIc(t)

N(t)
+ βenEn(t)

)

S(t)− σeE(t− τ1)− µE(t),

dIs(t)

dt
= σeE(t− τ1)− σsIs(t− τ2) + µIs(t), (S.6)

dIc(t)

dt
= σsIs(t− τ2)− (σc + µ)Ic(t).

See Table S3 for the parameters of the DDE model.
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Supplementary tables

Table S1: Ratios for animal populations in di�erent stages of JD under di�erent time

regions. Approximate ratios of animals in the Silent, Sublinial, and Clinial stages at a partiular

time in a given region. These ratios show that the JD Ieberg phenomenon annot be observed.

Approximate attle population R1 R2 R3 R4

at eah time point in Region

Ic 25.0 100.0 125.0 100.0

Is 50.0 200.0 150.0 150.0

E 25.0 50.0 25.0 25.0

Ratio (Ic : Is : E) 1:2:1 2:4:1 5:6:1 4:6:1
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Table S2: Ratios for animal populations in di�erent stages of JD under di�erent time

regions using estimated parameters. Approximate ratios of animals in the Silent, Sublinial,

and Clinial stages at a partiular time in a given region with µ = 0.2. These ratios show that the

JD Ieberg phenomenon annot be observed.

Approximate attle population R1 R2 R3 R4

at eah time point in Region

Ic 25.0 50.0 50.0 50.0

Is 50.0 100.0 75.0 75.0

E 25.0 25.0 25.0 25.0

Ratio (Ic : Is : E) 1:2:1 2:4:1 2:3:1 2:3:1

Table S3: Time delays in the silent and sublinial stages.

Time delay Stage of infetion Delay interval

τ1 Silent stage delay 0-0.5 years

τ2 Sublinial stage delay 2-10 years
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