Supplementary file

Model analysis: Supplementary file S1

Positivity and boundedness of solutions

We show that the model system defined by the system of equations
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is well-posed from a mathematical and biological stand-point and that solutions to the system are
always positive and bounded within the region defined by
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First, we note that all model parameters and variables are non-negative. If initial conditions of
the form (S(0), E(0), I5(0), I.(0)) = (S°, E°, 19, 10,) for system (S.1) are provided in ®, then using
standard techniques from [1, 2], we can show that this system has a unique solution in ®, which
depends continuously on the initial conditions.
The dynamics of the total cattle population is governed by the equation
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where N(0) = NO is the initial size of the total cattle population. Thus, ® is positively-invariant
and attracting with respect to system (S.1), and so the system is well-posed in .

Basic reproduction number

We use the next generation matrix method [3, 4] to compute the basic reproduction number of our
model. By this method, the basic reproduction number of our model is the spectral radius of the
next generation matrix
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Note that the matrix .% is made up of new infections, while the matrix ¥ consists of terms depict-
ing the transfer of infection from one class to another. Also, observe that the value of the basic
reproduction obtained through the next generation operator approach is the same as that obtained
by seeking conditions under which a transcritical bifurcation exists.

Existence and stability of equilibrium solutions

The equilibrium solutions of system (S.1) together with the equation
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are obtained by setting the right hand sides of the equations to zero and solving the resulting

system of algebraic equations for the variables. This process indicates that equations (S.1) and

A
9 ﬁ7
endemic equilibrium solution & = (S*, E*, I}, I}, N*, E"), which can be expressed in terms of I},
the endemic equilibrium value of the clinically sick cattle as follows:

(S.3) has a disease-free equilibrium solution & = (%, 0,0,0 O) when Ry < 1 and a unique stable

Aoeosv(A — o 1Y)

S* = ,
Apvoeos + (pv(oe + p)(os + 1) (v + ) Ro — 0coe(Ben(Vs(0c + 1) + 057e) 12 + posv)) 1
Bt — (Us + N)(UC + :“)I: It — (Uc + N)I: N* — A—o.l E — (78(‘7c + :U) + 'YCUS)I:
050 e O ’ w0 oV ’
with I} given by the equation
(1% + a1 I} + ag) = 0, (S.4)
where
a = — HVOs <Aaeﬁen(%(ac+ﬂ)+%08) + (oe + p)(os + p)(oe + 1) Ro _1>
Ben(Vs(c + ) +ve0s) \uv(oe + p)(os + p)(oe + 1) 0e0s0¢ ’
" Apvoeos(Rp — 1)
0 p—

/Beno'c(’)/s(o'c + M) + VCUS) .

Equation (S.4) indicates that &y, always exists, and that when Ry > 1, we can have one epidemio-
logically feasible endemic equilibrium solution. This endemic equilibrium solution can be computed
in closed form by solving the quadratic portion of equation (S.4) in R. The existence of an endemic
equilibrium solution depicts persistence of JD within a cattle population.



Theorem 1. The DFE of the system given by equations (S.1) is both locally and globally asymp-
totically stable when %y < 1. When %y > 1, & is unstable and there exists an endemic equilibrium
solution &,

Proof. We establish the proof of Theorem 1. From the calculations leading to the basic reproduction
number, it is clear that the disease-free equilibrium is locally and asymptotically stable when %, < 1.

We now use the next generation matrix approach to establish the global stability of the disease-
free steady state. To achieve this, we set X =S, Z = (E, I, I, E,) and split equations (S.1)-(S.3)
into two subsystems — an equation in X, or a disease-free equation and a collection of four equations
in Z, consisting of the second, third and fourth equations of system (S.1) and Equation (S.3) as
follows:

X = F(X,0),
Z = G(X,Z2).

Clearly, the disease-free steady state & is locally and asymptotically stable when %, < 1 and
the only equilibrium solution (X*,0), of the disease-free equation is globally and asymptotically
stable. Hence, by the approach in [5] , all we need to do in order to establish the global stability
of the disease-free equilibrium is to show that G(X,Z) = Dz(X*,0) — G(X,Z) > 0 in ®, where
Dz(X*,0) — G(X, Z) is the Jacobian of G evaluated at the disease-free equilibrium (X*,0). But
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Since 0 < 5 < N < & (B, + fele) (1= £) + BenEn (% _ S) > 0. Clearly, G(X,Z) > 0. Thus,
the disease-free equilibrium is globally and asymptotically stable.

Special case, 0. =0

Assuming that JD does not kill cattle, the basic reproduction number for the system reduces to
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and the equilibrium solutions now become & = <%,0,0,0 A 0) and & = (S*, E*, I, I}, N*,E"),
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This indicates that the endemic equilibrium &, only exists when %y > 1. Note that &, simplifies
to & when Zy < 1. Following standard nonlinear dynamics techniques it can easily be shown that
the & is globally and asymptotically stable when %y < 1 and unstable when %, > 1. It can also
be shown that &, is stable when %y > 1.

Additional results: Supplementary file S2

See Figure S1, and Tables S1 and S2 for additional farm (u = 0.2) JD predicted dynamics and
ratios.



Delay differential equation (DDE) model: Supplementary file S3

The transmission model is modified into an DDE model and the equations for E(t), Is(t), and I.(t)
take the forms:
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See Table S3 for the parameters of the DDE model.
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Supplementary tables

Table S1: Ratios for animal populations in different stages of JD under different time
regions. Approximate ratios of animals in the Silent, Subclinical, and Clinical stages at a particular
time in a given region. These ratios show that the JD Iceberg phenomenon cannot be observed.

Approximate cattle population | R1 R2 R3 R4
at each time point in Region

I. 25.0 | 100.0 | 125.0 | 100.0
I 50.0 | 200.0 | 150.0 | 150.0
E 25.0 | 50.0 | 25.0 | 25.0
Ratio (I.: I : E) 1:2:1 | 2:4:1 | 5:6:1 | 4:6:1




Table S2: Ratios for animal populations in different stages of JD under different time
regions using estimated parameters. Approximate ratios of animals in the Silent, Subclinical,
and Clinical stages at a particular time in a given region with g = 0.2. These ratios show that the
JD Iceberg phenomenon cannot be observed.

Approximate cattle population | R1 R2 R3 R4
at each time point in Region

I. 25.0 | 50.0 | 50.0 | 50.0
I 50.0 | 100.0 | 75.0 | 75.0
E 25.0 | 25.0 | 25.0 | 25.0
Ratio (I.: I : E) 1:2:1 | 2:4:1 | 2:3:1 | 2:3:1

Table S3: Time delays in the silent and subclinical stages.

Time delay | Stage of infection Delay interval
Ty Silent stage delay 0-0.5 years
Ty Subclinical stage delay | 2-10 years




