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Supplementary methods

Computation: conditional distributions

The conditional distributions for the Gibbs sampling are derived below. Note that ω is marginalized out

analytically and need not enter the computations. The full posterior distribution is

p(α,η, σ2, τ 2,γ|y) ∝ p(α)p(η|σ2, τ 2,γ)p(σ2)p(τ 2)p(γ)p(y|α,η, σ2). (1)

Step 1: τ 2

The components of τ 2 can be sampled independently with only the corresponding element of η affecting the

sampling. For efficiency of the implementation, only τ2j for j with γj = 1 are actually sampled in this step

as the others do not affect the linear model. For others, the full conditional distribution is the prior and

sampling is done just-in-time, if they are considered for addition to the model in the third step.

When γj = 1,
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Step 2: α

p(α|η, σ2, τ 2,γ,y) ∝ p(α)p(y|α,η, σ2) (3)
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where I is an identity matrix.

Step 3: γ

Step 3 is implemented as a Metropolis-Hastings step. The proposal algorithms are described in the main

text. The required posterior probability of γ for the acceptance probability is derived next. η and σ2 are

integrated over analytically, so they need not be conditioned on in this step. η can be divided into to parts,

one with all ηj with the corresponding γj = 0 and the other with all ηj with γj = 1. The former part does

not affect the likelihood and the integral over that part is
∏
j:γj=0

∫
δ0(ηj)dηj = 1. The latter part affects

the likelihood and is denoted ηγ below (corresponding part of X is denoted Xγ).

p(γ|α, τ 2,y) =

∫ ∫
p(γ,η, σ2|α, τ 2,y)dηdσ2 (4)

∝ p(γ)

∫ ∫
p(ηγ |σ2, τ 2)p(σ2)p(y|α,ηγ , σ2)dηγdσ
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First integrating over ηγ gives

∫
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where Στ is a diagonal matrix of the τ2j s with j such that γj = 1 and S2 = yTy − α2yTXγ(Σ−1τ +
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where Γ(·) is the gamma function. Combining this with the γ prior gives the required posterior probability

(up to a scale factor, which cancels out in the acceptance probability).

Step 4: σ2

η is integrated over analytically as in the previous step (Equation 5). Combining the result with the Inv − χ2

prior of σ2 gives the conditional distribution:
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Step 5: η

Finally, the conditional distribution for ηγ part of η is (the other part is constrained to 0)

p(ηγ |α, σ2, τ 2,γ,y) ∝ p(ηγ |σ2, τ 2)p(y|α,ηγ , σ2) (8)

= N(ηγ |0, σ2Στ )N(y|Xγαηγ , σ
2I)

∝ exp(− 1
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Move size proposal

Pasarica and Gelman [2010] give importance sampling estimators for the objective function. The multiple

importance sampling estimator from B batches with Lb samples each has form

ĥ(p|pB−1, . . . , p0) =

∑B
b=1

∑Lb
l=1 ||γb,l − γ∗b,l||2a(γb,l,γ

∗
b,l)wp|pB−1,...,p0(γb,l,γ

∗
b,l)∑B

b=1

∑Lb
l=1 wp|pB−1,...,p0(γb,l,γ∗b,l)

, (9)

where the weights wp|pB−1,...,p0(γ,γ∗) =
qp(γ

∗,k|γ)∑B
b=1 Lbqpb−1

(γ∗,k|γ) . We note that is a form of adaptive multiple

importance sampling [Cornuet et al., 2012], as the pbs are formed sequentially based on all past samples by

maximizing the objective.

Assuming the decomposition of qp(γ
∗, k|γ) = qp(k)q(γ∗|k,γ) and that the latter factor is independent of
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p and b (which will not actually hold exactly in our sampler; see below), the weights simplify to include only

the qp(k) factor. Now, the estimator may be rewritten as

ĥ(p|pB−1, . . . , p0) =

∑
k kqp(k) 1∑

Lbqb−1(k)

∑
b

∑
l I(k = kb,l)a(γb,l,γ

∗
b,l)∑

k qp(k) 1∑
Lbqb−1(k)

∑
b

∑
l I(k = kb,l)

, (10)

where I(·) = 1 if the condition holds and zero otherwise. The sum in the numerator can be read as the move

size times the probability of proposing it and accepting (mean acceptance rate), that is, the expected move

size with parameter p. Note that computing ĥ requires only tracking the number of proposals of move size k,

the expected number of proposals of move size k and the sum of the acceptance probabilities of moves of size

k for each k during the sampling. The maximization can be robustly performed by computing the objective

function for a number of values of p in a grid (we have used 50 equally spaced grid points in [0.01, 0.99]).

Our proposed sampling scheme will update also q(γ∗|k,γ) after each batch as will described below. Thus,

the Equation 10 will not hold exactly. However, it is used in this work because of its simplicity compared

to accounting for the adaptation of q(γ∗|k,γ). Moreover, the adaptation of q(γ∗|k,γ) diminishes with the

growing number of batches and the Equation 10 should accordingly tend to better estimates, if the adaptive

period is long enough. Heuristics could be used to downweight the contribution of early batches (where the

samples may also not be from the stationary distribution) to the adaptation of p, but this is not implemented

here. Notably, this issue does not affect the validity of the sampling algorithm when finite adaptation is used

as long as the final transition kernel is valid.

The proposed sampling scheme will use auxiliary variables in the sampling and may include a delayed

rejection step. This requires modifications to the above formulas. Taking the auxiliary variable ζ into account

in the objective function gives

h(p) = EJ [||γ − γ∗||2] =
∑
γ

∑
ζ∗

∑
γ∗

||γ − γ∗||2π(γ)qp(ζ
∗, k|γ)q(γ∗|ζ∗,γ)a(γ; ζ∗,γ∗, ζ), (11)

where there is no need to sum over ζ as it is deterministic given ζ∗ and γ. With the factorization

qp(ζ
∗, k|γ)q(γ∗|ζ∗,γ) = qp(k|γ)q(ζ∗1:k|k,γ)q(γ∗|ζ∗,γ), Equation 10 holds also when the sampling utilizes

auxiliary variables.

With delayed rejection move the the objective function can be written as

h(p) = EJ [||γ − γ′∗||2] =
∑
γ

∑
γ∗

∑
γ′

∑
γ′∗

||γ − γ′∗||2π(γ)qp(γ
∗,γ′, k|γ)q(γ′∗|γ∗,γ′,γ), (12)

where qpq is written using the view of delayed rejection, where both proposals (γ∗ first and γ′ second) are gen-
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erated by qp and then one is chosen in q as the new state γ′∗ [Storvik, 2011]. Again qp(γ
∗,γ′, k|γ)q(γ′∗|γ∗,γ′,γ)

factorizes into qp(k|γ) and a part which is independent of p and this may be used to simplify computation in

the multiple importance sampling. However, now the acceptance probability is always one and moves with

sampled move size being k may have ||γ − γ′∗||2 < k. Thus, instead of Equation 10, the simplified estimator

may be written as

ĥ(p|pB−1, . . . , p0) =

∑
k

qp(k)∑
Lbqb−1(k)

∑
b

∑
l I(k = kb,l)||γb,l − γ′∗b,l||2∑

k
qp(k)∑
Lbqb−1(k)

∑
b

∑
l I(k = kb,l)

. (13)

It is possible to write the non-DR version also without the acceptance probability (identically to above with

γ′∗b,l = γb,l if move is rejected), but using the knowledge of the acceptance probabilities could be expected to

give more stable estimates.

Note on the sequential sampling

The proposal distribution q1(γ∗|γ) was augmented with auxiliary variables fixing the order in which the

variables have been proposed as the proposal probability depends on this order. Alternatively, one may sum

over the different orderings to get rid of this dependency. The latter can be shown to have smaller asymptotic

variance for MCMC estimates (see Storvik [2011]), but may be slow to compute. For example, for k additions

the sum has factorial of k terms and naive summing would be inefficient already with moderate k (with k = 10

there are more than 3.6 million terms).

We note that separating the sampling of additions and removals would allow considering the sequential

sampling of each as a biased urn scheme (e.g., the urn for additions contains all variables, which are not in

the model and has not been yet proposed to be added in this proposal). The scheme can be recognised as a

special case of the Wallenius’ noncentral hypergeometric distribution, for which summing over the orderings

would be possible, for example, with one dimensional numerical integration, where the complexity of the

integrand scales linearly in k [Fog, 2008]. However, this is not pursued further here.

Delayed rejection and the deterministic procedure of h1 and h2

The second proposal is made from a discrete distribution with 2k states, where the proposal probabilities

are chosen such that the proposal will always be accepted (with positive probability for proposing the old

state γ). In order to make all factors cancel in a2, we choose q2(γ′|γ, ζ∗) = π(γ′)q1(γ′∗, ζ′∗, k|γ′)(1 −

a1(γ′; ζ′∗,γ′∗, ζ′))/Z, that is, the product of the posterior probability of the proposed model, the probability

of making a first proposal from the proposed model with updates to the variables specified by ζ∗ and the
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probability of rejecting the hypothetical first proposal. Z normalizes the distribution over the 2k models.

It is required that q2(γ′|γ, ζ∗) = q2(γ′|γ′, ζ′∗), so that the proposal probabilities and Z do not depend on

which of the 2k pairs (γ, ζ∗) q2 is conditioned on.

To this end, we need to have correspondence between the pairs. The following algorithm is used to

determine ζ′∗ for given γ′ and (γ, ζ∗) in q2 and h2 (i.e., h2(ζ′∗|γ′,γ, ζ∗) = 1 when ζ′∗ follows from this

algorithm and zero otherwise; similarly also h1):

1. Form an intermediate ζb: 1) set ζb = ζ∗, 2) reverse the order of removals in ζb, 3) set all operations in

ζb to additions.

2. Form ζ′∗: 1) set ζ′∗ = ζb, 2) convert such elements of ζ′∗ to removals, which are required for it to be

a valid first stage proposal from state γ′, 3) reverse the order of removals.

Notice that performing the step 1 for ζ′∗ leads to the same ζb as using ζ∗. Also, if in step 2.2 γ′ is replaced

with γ, then ζ′∗ = ζ∗. Further, as all permutations of the order of the elements in ζ∗ lead to different ζb,

there is only one ζ′∗ corresponding to ζ∗.

It would be equally valid to keep the original order and only swap the operations (additions and removals)

appropriately. However, if we have sampled ζ = (add 1, add 2), then we may expect that a reverse move with

(remove 2, remove 1) has larger proposal probability than (remove 1, remove 2) on average. Hence, reversing

the order makes sense with regard to maximizing the proposal probabilities.

Exhaustive computation of a set of models through updates to the Cholesky

decomposition

Details on the computation of the 2k models in the delayed rejection step are given below. First, the

formula for the marginal likelihood of the linear regression model is given and its computation via Cholesky

decomposition briefly described. We briefly review the Cholesky update operations required and refer to

Clark [1981] for more details on the traversal of the 2k models in O(2kk) computational complexity.

The marginal likelihood after integrating analytically out the parameters β and σ2 is following (where

τ2α = α2τ2):

p(y|X, τ2α,γ) =

∫
p(β|σ2, τ2α,γ)p(σ2)p(y|β, σ2,X)dβdσ2

= π−n/2|Σ|−1/2|XT
γXγ + Σ−1|−1/2 Γ((νσ + n)/2)

Γ(νσ/2)
(νσs

2
σ)νσ/2(νσs

2
σ + S2)−(νσ+n)/2,

where S2 = yTy − yTXγ(XT
γXγ + Σ−1)−1XT

γ y and Σ is the prior covariance matrix of βγ (subscripting

with γ refers to taking only such elements for which γj = 1).
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Let A = XT
γXγ + Σ−1 and b = XT

γ y. The Cholesky factor of A is an upper triangular matrix U , such

that A = UTU . Computing Syy amounts to computing yTy − vT v, where v is solved from UT v = b. Note

that the determinant |A| = |U |2, where |U | can be computed as the product of the diagonal elements of U

(3.11, Dongarra et al. [1979]). The computational complexity of the Cholesky decomposition is O(q3), where

q is the number of variables [Dongarra et al., 1979].

Taking A1 to be the leading submatrix (upperleft-most square submatrix) of A, then the corresponding

part of U , U1, is its Cholesky factor (i.e., A1 = UT1 U1) (8, Dongarra et al. [1979]). Consequently, computing

yTy − vT1:rv1:r, where v1:r is a subvector with the r first elements of v allows the computation of the Syy for

a model with only the r first variables (the solution to UT v = b for the first r elements does not depend on

the rest as UT is lower triangular).

This enables introducing new variables to the model by adding them to new positions to the end of the

Cholesky decomposition. The old values will not change and only the new part needs to be computed. In

fact, adding a new variable corresponds to running one new iteration of the algorithm, which has complexity

O(q2) (see the factorization algorithm at 3.10 of Dongarra et al. [1979]), after the computation of the new

covariances. Removing variables from the model amounts to moving them to the last positions and then

dropping their contribution to the likelihood. This requires being able to do updates to the Cholesky decom-

position when positions of variables are swapped. Swapping two adjacent variables can be done with a single

Givens rotation, where multiplying the rotation into the matrix has complexity O(q) (10, Dongarra et al.

[1979]). Moving a variable from an internal position to last requires q − i rotations, where i is the position

of the variable.

These operations facilitate algorithms for computing the 2k models with only swaps of positions of adjacent

variables. With the number of swaps being 2k − k − 1 [Clark, 1981] the computational complexity for the

algorithm is O(2kk), assuming as a starting point a full Cholesky decomposition with the k variables at the

last positions (this may require some additional Cholesky updates when the first, rejected proposal in the

delayed rejection algorithm involves removals). Now, traversing all of the models amounts to visiting all

subsets of the set {1, 2, . . . , k} in an appropriate order. Clark [1981] gives one such algorithm.

Kohn-Smith-Chan and Nott-Kohn algorithms

We may write some of the alternative schemes proposed in literature to a similar form as in the samplers in

the main text by selecting q1 and h1 appropriately. We assume that the move (or block) size k is fixed as

in the standard implementations of these algorithms. We take q1(γ∗, ζ∗|γ, k) = q(ζ∗|γ, k)q(γ∗|ζ∗,γ) with

q(ζ∗|γ, k) ∝ 1 (i.e., given move size, select the variables to update uniformly) and h(ζ|ζ∗) = 1 if ζ = ζ∗
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and zero otherwise for this purpose. The uniform sampling of ζ∗ gives “random scan” versions of Gibbs-like

algorithms, which have similar definition of iteration to the algorithms proposed in the main text.

Random scan version of Kohn-Smith-Chan (KSC) sampler [Kohn et al., 2001] takes q(γ∗|ζ∗,γ, k) =

p(γζ∗ |γ−ζ∗), that is, it proposes a model from the 2k models available as permutations of the k selected

variables with the sampling probabilities proportional to the prior probabilities. Random scan version of

the Nott-Kohn (NK) sampler [Nott and Kohn, 2005] uses an adaptive distribution for q(γ∗|ζ∗,γ) (here, the

marginal inclusion probabilities adapted similar to the proposed algorithms in the main text, although Nott

and Kohn [2005] advocate the use of an empirical covariance matrix of γ to account for correlations; however,

in applications to datasets in the scale considered in this work estimating the covariance matrix is not feasible

unless some additional structure would be imposed on it).

The NK sampler and the tuned sampler described in the main text are similar. An off-diagonal element

in the transition matrix of the single-step NK Markov chain is

PNK(γ,γ∗) =


0 if ||γ − γ∗|| > 1

1
mπj min(1,

π(γ∗)(1−πj)
π(γ)πj

) if ||γ − γ∗|| ≤ 1 and γj = 0

1
m (1− πj) min(1,

π(γ∗)πj
π(γ)(1−πj) ) if ||γ − γ∗|| ≤ 1 and γj = 1,

(14)

where m is the number of variables, π(·) is the posterior probability of a model and πj is the proposal

probability for jth variable (adapted to the marginal posterior inclusion probability).

For the sampler described in the main text

P (γ,γ∗) =


0 if ||γ − γ∗|| > 1

0.5
πj
Za

min(1,
π(γ∗)(1−πj)/Z′r
π(γ)πj/Za

) if ||γ − γ∗|| ≤ 1 and γj = 0

0.5
(1−πj)
Zr

min(1,
π(γ∗)πj/Z

′
a

π(γ)(1−πj)/Zr ) if ||γ − γ∗|| ≤ 1 and γj = 1,

(15)

where the 0.5 factors come from taking the move to be an addition or removal and assuming that γ is

not the empty model or the full model. The normalization constants in the acceptance probability will

often approximately cancel in the equilibrium phase of the sampling, which leaves the difference in the

transition matrices to the selection probabilities (2Z vs m). Now, probably 2Z < m, meaning that with

these assumptions the off-diagonal elements of the latter sampler are larger. However, it should be noted

that an essential feature of the NK sampler is that is has diagonal mass from such moves that do not require

likelihood evaluations at all and are thus fast (γ has γj = 1 (or 0) and the proposal is to keep γj = 1 (0);

then γ = γ∗ and the move is always accepted but the chain remains still).
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