Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis

Supplementary Table S1

Tomi Peltola, Pekka Marttinen, and Aki Vehtari

Posterior inclusion probability consistency

	intra-correlation			inter-correlation			
Setting / Sampler	median	IQR	range	median	IQR	range	
$30 \text{ causal SNPs}, H^2 = 0.2$							
adaptive MS-DR	1.00	1.00 - 1.00	0.99 - 1.00	1.00	1.00 - 1.00	1.00 – 1.00	
adaptive MS	1.00	1.00 - 1.00	0.99 - 1.00	1.00	1.00 - 1.00	0.99 – 1.00	
adaptive SS	1.00	0.99 – 1.00	0.98 - 1.00	1.00	1.00 - 1.00	0.99 – 1.00	
non-adaptive MS-DR	0.99	0.99 – 1.00	0.98 – 1.00	1.00	0.99 – 1.00	0.99 – 1.00	
non-adaptive MS	0.99	0.98 – 0.99	0.93 – 1.00	0.99	0.99 – 1.00	0.97 – 1.00	
non-adaptive SS	0.99	0.98 – 0.99	0.93 – 1.00	0.99	0.99 – 1.00	0.96 – 1.00	
NK10	0.99	0.99 – 1.00	0.93 – 1.00	1.00	0.99 – 1.00	0.95 – 1.00	
NK05	1.00	0.99 – 1.00	0.92 – 1.00	1.00	0.99 – 1.00	0.96 – 1.00	
NK01	0.99	0.97 – 1.00	0.90 – 1.00	1.00	0.99 – 1.00	0.93 – 1.00	
KSC10	0.99	0.98 – 1.00	0.94 – 1.00	1.00	0.99 – 1.00	0.97 – 1.00	
KSC05	0.99	0.97 – 0.99	0.90 – 1.00	1.00	0.98 – 1.00	0.96 – 1.00	
KSC01	0.97	0.94 – 0.98	0.81 - 1.00	0.98	0.97 – 0.99	0.84 – 1.00	
100 causal SNPs, $H^2 = 0.2$							
adaptive MS-DR	1.00	0.99 – 1.00	0.99 – 1.00	1.00	1.00 - 1.00	0.99 – 1.00	
adaptive MS	1.00	0.99 – 1.00	0.99 – 1.00	1.00	1.00 - 1.00	1.00 – 1.00	
adaptive SS	0.99	0.98 – 0.99	0.93 – 1.00	0.99	0.99 – 1.00	0.96 – 1.00	
non-adaptive MS-DR	0.98	0.97 – 0.99	0.93 – 0.99	0.99	0.99 – 0.99	0.97 – 1.00	
non-adaptive MS	0.98	0.97 – 0.99	0.95 – 0.99	0.99	0.99 – 0.99	0.97 – 1.00	
non-adaptive SS	0.97	0.97 – 0.98	0.93 – 0.99	0.99	0.98 – 0.99	0.95 – 1.00	
NK10	1.00	0.99 – 1.00	0.96 – 1.00	1.00	1.00 - 1.00	0.98 – 1.00	
NK05	0.99	0.99 – 1.00	0.98 – 1.00	1.00	1.00 - 1.00	0.98 – 1.00	
NK01	0.99	0.98 – 0.99	0.86 - 1.00	0.99	0.99 – 1.00	0.95 – 1.00	
KSC10	0.99	0.99 – 0.99	0.95 – 1.00	1.00	0.99 – 1.00	0.97 – 1.00	
KSC05	0.99	0.98 – 0.99	0.96 – 1.00	0.99	0.99 – 1.00	0.98 – 1.00	
KSC01	0.98	0.97 – 0.98	0.94 – 0.99	0.99	0.99 – 0.99	0.97 – 1.00	

_	intra-correlation			inter-correlation		
Setting / Sampler	median	IQR	range	median	IQR	range
$30 \text{ causal SNPs}, H^2 = 0.5$						
adaptive MS-DR	1.00	1.00 - 1.00	0.98 – 1.00	1.00	1.00 - 1.00	0.99 – 1.00
adaptive MS	1.00	1.00 - 1.00	0.91 - 1.00	1.00	1.00 - 1.00	0.94 – 1.00
adaptive SS	1.00	0.99 – 1.00	0.93 – 1.00	1.00	0.99 – 1.00	0.97 – 1.00
non-adaptive MS-DR	0.99	0.99 – 1.00	0.92 – 1.00	1.00	0.99 – 1.00	0.97 – 1.00
non-adaptive MS	0.99	0.98 – 0.99	0.94 – 1.00	0.99	0.99 – 1.00	0.92 – 1.00
non-adaptive SS	0.99	0.98 – 1.00	0.89 – 1.00	0.99	0.99 – 1.00	0.95 – 1.00
NK10	1.00	0.98 – 1.00	0.87 - 1.00	1.00	0.99 – 1.00	0.93 – 1.00
NK05	0.99	0.99 – 1.00	0.85 – 1.00	1.00	0.99 – 1.00	0.94 – 1.00
NK01	0.99	0.97 – 1.00	0.83 – 1.00	0.99	0.99 – 1.00	0.94 – 1.00
KSC10	0.99	0.97 – 0.99	0.86 – 1.00	0.99	0.99 – 1.00	0.93 – 1.00
KSC05	0.99	0.97 – 0.99	0.88 – 1.00	0.99	0.99 – 1.00	0.91 – 1.00
KSC01	0.90	0.76 – 0.95	0.34 – 1.00	0.96	0.86 – 0.99	0.43 – 1.00
100 causal SNPs, $H^2 = 0.5$						
adaptive MS-DR	0.99	0.99 – 1.00	0.99 – 1.00	1.00	1.00 – 1.00	0.99 – 1.00
adaptive MS	0.99	0.99 – 0.99	0.94 – 1.00	0.99	0.99 – 1.00	0.95 – 1.00
adaptive SS	0.99	0.98 – 0.99	0.96 – 0.99	0.99	0.99 – 0.99	0.97 – 1.00
non-adaptive MS-DR	0.98	0.97 – 0.98	0.94 – 0.99	0.99	0.99 – 0.99	0.98 – 1.00
non-adaptive MS	0.97	0.96 – 0.98	0.87 – 0.99	0.98	0.98 – 0.99	0.93 – 0.99
non-adaptive SS	0.97	0.96 – 0.98	0.94 – 0.99	0.98	0.98 – 0.99	0.96 – 0.99
NK10	0.99	0.99 – 1.00	0.93 – 1.00	1.00	0.99 – 1.00	0.96 – 1.00
NK05	0.99	0.98 – 0.99	0.96 – 1.00	1.00	0.99 – 1.00	0.97 - 1.00
NK01	0.98	0.97 – 0.99	0.94 – 1.00	0.99	0.99 – 1.00	0.96 – 1.00
KSC10	0.99	0.98 – 0.99	0.93 – 1.00	0.99	0.99 – 1.00	0.97 – 1.00
KSC05	0.98	0.98 – 0.99	0.94 – 0.99	0.99	0.99 – 0.99	0.97 – 1.00
KSC01	0.98	0.96 – 0.98	0.93 – 0.99	0.99	0.98 – 0.99	0.94 – 1.00

Intra-correlation: Correlations between the three chains (chain 1 vs chain 2, 1 vs 3, 2 vs 3) pooled for the 20 datasets in each simulation configuration and the statistics computed from the $60 (20 \times 3)$ values for each sampler.

Inter-correlation: Correlations of each chain against the mean posterior inclusion probabilities over all chains and samplers (chain 1 vs mean, 2 vs mean, 3 vs mean) for the 20 datasets pooled and the statistics computed from the $60 (20 \times 3)$ values for each sampler.

Statistics: median, inter-quartile range (IQR) and range (minimum and maximum values).