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Model S1

Derivation

Equations (1–4) in the main text are derived considering the possible out-
comes of interactions of observers of type i with models of type j, with
i, j ∈ {0, P, T, PT}. According to the rules given in the main text, the prob-
ability that an observer of type i copies a model of type j is given by the
entries in the following array:

Model:
Observer: 0 P T PT

0 u u u
P u w w

T v u u
PT u u w

where the entries in boldface reflect our assumptions on the effect of prefer-
ence and lack of preference on cultural transmission. Interactions of models
and observers of the same type are not considered as they do change the
frequency of types.

Transition rates between types are constructed as follows. Suppose, for
instance, that an observer of type PT meets a model of type T . Trait
and preference are copied independently with probability w. Thus with
probability w(1 − w) the observer copies the model’s preference value but
not its trait value, resulting in the observer changing from PT to T . With
probability w(1−w) the observer copies the model’s trait value but not its
preference value, which results in no change in the observer’s type. With
probability w2 the observer copies both the trait and preference values,
resulting in a change from type PT to T . Hence in interactions between PT
observers and T models there is overall a probability w(1 − w) + w2 = w
that the observer changes from PT to T , and a probability 1 − w that the
observer does not change. Since encounters between PT and T occur at a
rate of xPTxT , the overall rate at which such transitions occur is w xPTxT .
Table S1 shows the rates of all possible transitions, calculated in this same
way (the one just calculated is entry 20). Equations (1–4) in the main text
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follow from calculating the net effect of these transitions as follows:

ẋ0 = −(1 : 5) + 6 + 7 + 11 + 12 + 16 (1)

ẋP = −(6 : 10) + 1 + 3 + 14 + 18 + 19 (2)

ẋT = −(11 : 15) + 2 + 4 + 8 + 17 + 20 (3)

ẋPT = −(16 : 20) + 5 + 9 + 10 + 13 + 15 (4)

where numbers refer to lines in Table S1 and a : b indicates the range from
a to b inclusive.

Analysis

We study the model using a mix of analytical and numerical methods as
follows. We noticed numerically that the equation for ẋ0 (equation 1 in the
main text) can be simplified as

ẋ0 = (v − u)x0xT (5)

as the sum of the two other terms is between 10 and 100 times smaller
than (v − u)x0xT over a range of initial conditions and parameter values
(Figure S1). This simplification allows us to write a closed system for x0
and g = xP + xPT :

ẋ0 = (v − u)x0 (1− g − x0) (6)

ġ = −(w − u) g (1− g − x0) (7)

where we have eliminated xT through the identity

xT + x0 + g = 1 (8)

The description of the system is completed by the equation for the trait
frequency f = xT + xPT (equation 6 in the main text), which in terms of
the variables x0, g, and f is rewritten as:

ḟ = −(v − u)x0(1− g − x0)− (w − u) f(1− f − x0) (9)

Equilibria

We denote equilibrium values by a superscript ⋆. Equilibria of equations
(6–7) are of the form

x⋆0 + g⋆ = x⋆0 + x⋆P + x⋆PT = 1 (10)
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implying

x⋆T = 0 (11)

Given equation (10) and the equilibrium condition ḟ = 0, equation (9 implies

f⋆(1− f⋆ − x⋆0) = 0 (12)

which, using equation (11) and expanding f⋆ = x⋆T + x⋆PT yields

x⋆PTx
⋆
P = 0 (13)

Implying that either x⋆P = 0 or x⋆PT = 0, or both. Equation (4) in the main
text, however, implies x⋆PT = 0 for all x⋆

0
> 0. In conclusion, equilibria of

the model are of the form:

x⋆0 + x⋆P = 1 x⋆PT = x⋆T = 0 (14)

hence the trait cannot persist in the population, but the preference can.
The following analysis characterizes system trajectories and shows that x⋆P
is generally small.

System trajectories

Because x0 and g are frequencies, they must be ≥ 0 and must sum to a
number less than 1. Thus equations (6) and (7) hold in the triangle defined
by x0 ≥ 0, g ≥ 0, 1 − x0 − g ≥ 0. In its interior, ġ < 0 and ẋ0 > 0 always.
Taking the ratio of equations 6 and 7 we obtain a differential equation for
the shape of the system trajectory as a curve g = g(x0):

dg(x0)

dx0
=

dg

dt

dt

dx0
= −

w − u

v − u

g

x0
(15)

The combination of parameters (w−u)/(v−u) recurs often, hence we define

φ =
w − u

v − u
(16)

The solution of (15) is thus

g(x0) = C x−φ
0

(17)

where the constant C is set from initial conditions as

C = g(0) (x0(0))
φ (18)
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Examples of these trajectories are in Figure S2 given the initial condition
f(0) = 0.05 and varying g(0) as indicated. All trajectories end on the line
g = 1−x0, meaning that x⋆T = 0; as showed in the previous section, x⋆PT = 0
as well. The value of x⋆

0
, and thus of x⋆P = 1− x⋆

0
is the solution of

C(x⋆0)
−φ + x⋆0 − 1 = 0 (19)

with the highest value (there are two solutions, as it is apparent from Fig-
ure S2). This equation usually yields very low values of xP (Figure S3).

Existence of fashion cycles

We have established in the previous sections that all fashions eventually die
in this model. A fashion cycle occurs when, before disappearing, a trait
initially increases in frequency. We determine here, for given parameters
u, v, and w the minimum initial frequency of the preference, gmin(0), for a
cycle to occur.

Given initial conditions f(0) and g(0) the condition for f to initially
increase is, from equation (9):

−(v−u)x0(0)(1−g(0)−x0(0))+(w−u) f(0)(1−f(0)−x0(0)) > 0 (20)

Assuming that trait and preference are initially distributed independently,
implying the initial conditions xPT (0) = f(0)g(0), xT (0) = f(0)(1 − g(0)),
and xP (0) = g(0)(1− f(0)), we have

x0(0) = 1− f(0)− g(0) + f(0)g(0) (21)

Substituting this expression in equation (20) we get the condition

g2min(0)− (2 + φ)gmin(0) + 1 < 0 (22)

where φ = w−u
v−u

as defined in equation (16). The solution is

gmin(0) > 1 +
φ

2

(

1−

√

1 +
4

φ

)

(23)

(The second solution of the quadratic equation (22) is of no interest as it
is always > 1). Note that this condition does not rely on the simplified
dynamics of x0 in (6) and, moreover, it is independent of f(0). Thus, for a
given value of φ, the initial preference determines whether a fashion cycle
occurs irrespective of the initial frequency of the trait.
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Maximum frequency

A differential equation for trait frequency as a function of x0 is obtained
proceeding as in equation (15):

df(x0)

dx0
= −1 + φ

f(1− f − x0)

x0(1− g(x0)− x0)
(24)

This equation, however, does not appear to have a closed form solution as
equation (15), hence it is not possible to determine analytically the maxi-
mum frequency attained. It is possible to obtain lower and upper bounds
through the identity xT ≤ f ≤ xT + g, accurate to about 10% for small g(0)
to near-perfect for large g(0), but the formulae are not telling and we prefer
to present numerical results. Figure S5 shows that the maximum frequency
grows approximately linearly with g(0), and is not greatly influenced by φ.
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