
First-Order Algorithm

Transfer entropy between two neurons i and j is computed in two main steps:

1. For all time bins t, count the number of distinct firing patterns at it+1, it, and jt. This
is done to estimate transition probabilities (e.g. p(it+1, it, jt)). For first-order TE, there
are 23 = 8 possible patterns because a neuron is either spiking or not in a given time
bin.

2. Using the estimated transition probabilities, compute the TE from j ⇒ i (Tij) by
using Equation 1 below.

Tij =
∑
t

p(it+1, it, jt) log
p(it+1|it, jt)
p(it+1|it)

(1)

The first step is computationally expensive, so care must be taken to minimize the number of
steps taken for each pair of neurons. One way to picture the algorithm is shown in Figure 1,
where a copy of the time-series for neuron i is shifted backwards by one time bin (neuron
i′) and stacked on top of the time-series for neurons i and j. This copying and shifting of i
allows us to look at each column of the stacked series and simply count the distinct patterns
observed1. If we visit every column, we will have counted up all firing patterns present in
the data and can proceed to estimate the transition probabilities.

Figure 1: First-order transfer entropy with a delay of one time bin. The time-series for neuron i′

is a copy of the time-series for neuron i, but shifted back by one time bin.

At a high-level, the first-order algorithm looks something like Listing 1. For each pair of
N neurons, we count up the firing patterns for all time bins t ∈ {1 . . . D}, where D is the
duration of our data, and then use those counts to compute the TE from j ⇒ i. While this
algorithm works fine for dense time-series with a large proportion of spikes to time bins, it
is unnecessarily slow for sparse time series. When the proportion of spikes to time bins is

1In practice, we do not have to physically copy the time-series for neuron i. Instead, we maintain an
additional pointer into the time-series, shifted appropriately.

1



low, the majority of firing patterns will be empty (i.e. no neurons are spiking). How can we
use this to our advantage?

Listing 1: First-order transfer entropy algorithm for dense time-series

1 % N i s the number o f neurons
2 % D i s the t o t a l number o f time b ins ( dura t ion )
3
4 for i = 1 :N
5 for j = 1 :N
6 i j s e r i e s = [ s h i f t ( t im e s e r i e s ( i ) , −1) , t im e s e r i e s ( i ) , t im e s e r i e s ( j ) ]
7
8 % Count pa t t e rn s f o r a l l t ime b ins
9 counts = zeros (1 , 2ˆ3)
10 for t = 1 :D
11 pattern = i j s e r i e s ( : , t ) % Get f i r i n g pa t t e rn at time t
12
13 % Count pa t t e rn s (0−7)
14 counts ( pattern + 1) = counts ( pattern + 1) + 1
15 end
16
17 % Ca lcu l a t e TE from j −> i
18 for c = counts
19 . . . % Estimate t r a n s i t i o n p r o b a b i l i t i e s
20 end
21 end % for j
22 end % for i

Because most time bins will have no neurons spiking, we only need to visit the time bins
where at least one of our series (i′, i, and j) has a spike. The number unvisited time bins
will then be the count of our “no spike” firing pattern. If we assume that our time-series are
stored as a series of integers representing the time bins that a given neurons was spiking,
the algorithm will look like Listing 2.

We use the current and move next functions to represent a pointer into each time series
that can be moved forward. Instead of visiting every time bin, t now jumps around to just
the non-empty bins by moving to the minimum current value of all time-series. For each
visited bin, we count of the firing patterns as before, but we need to compute the number of
unvisited time bins (empty firing pattern) before calculating the TE from j ⇒ i.

Listing 2: First-order transfer entropy algorithm for sparse time-series

1 % N i s the number o f neurons
2 % D i s the t o t a l number o f time b ins ( dura t ion )
3
4 for i = 1 :N
5 for j = 1 :N
6 i j s e r i e s = [ s h i f t ( t im e s e r i e s ( i ) , −1) , t im e s e r i e s ( i ) , t im e s e r i e s ( j ) ]
7
8 % Sta r t o f f a t the f i r s t time bin wi th a sp i k e ( i ’ , i , j )
9 t = min( cur r ent ( i j s e r i e s ( 1 ) ) ,
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10 cur rent ( i j s e r i e s ( 2 ) ) ,
11 cur rent ( i j s e r i e s ( 3 ) ) )
12
13 % Count pa t t e rn s f o r a l l t ime b ins wi th s p i k e s
14 counts = zeros (1 , 2ˆ3)
15 v i s i t e d = 0
16
17 while t <= D
18 pattern = 0
19
20 % Go through i ’ , i , and j s e r i e s
21 for s e r i e s i d x = 1 :3
22 % Check f o r a sp i k e at time t
23 i f cur rent ( i j s e r i e s ( s e r i e s i d x ) ) == t
24 % Update f i r i n g pa t t e rn
25 pattern = b i t s e t ( pattern , s e r i e s i d x )
26
27 % Move the sparse time s e r i e s forward
28 move next ( i j s e r i e s ( s e r i e s i d x ) )
29 end
30 end % for s e r i e s i d x
31
32 % Get the next c l o s e s t time bin wi th a sp i k e
33 t = min( cur r ent ( i j s e r i e s ( 1 ) ) ,
34 cur rent ( i j s e r i e s ( 2 ) ) ,
35 cur rent ( i j s e r i e s ( 3 ) ) )
36
37 % Count pa t t e rn s [ 0 , 8)
38 counts ( pattern + 1) = counts ( pattern + 1) + 1
39 v i s i t e d = v i s i t e d + 1
40 end
41
42 % Al l un v i s i t e d time b ins have no s p i k e s ( pa t t e rn 1)
43 counts (1 ) = D − v i s i t e d
44
45 % Ca lcu l a t e TE from j −> i
46 for c = counts
47 . . . % Estimate t r a n s i t i o n p r o b a b i l i t i e s
48 end
49 end % for j
50 end % for i

For delayed TE, we would like to calculate the TE between i and j for multiple delays. This
is easily accomplished with the algorithm above by shifting the time-series for neuron i (and
also for i′) backwards by some delay d.
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First-Order Algorithmic Complexity

In order to predict the calculation time for a given data set, we need to identify which
aspects of the TE algorithm significantly affect performance. We can then derive a formula
for estimating the amount of time it will take to run any TE calculation.

The number of neurons N will definitely affect performance, since this quantity is used in
the two outer for loops in Listing 2 on lines 4 and 5. In fact, if we assume the body of the
j loop (starting on line 6) will take c seconds each time to run, then calculating TE for one
delay time will take roughly cN2 seconds. In computer science terminology, this means the
calculation time will grow quadratically with the number of neurons.

What other factors will affect performance? The number of time bins we have to visit will
certainly have an impact. For dense time-series, this will be D time bins. Sparse time-series,
however, we require that we go through and count how many bins were visited for all pairs
of neurons. Unfortunately, doing this is almost as computationally expensive as calculating
TE in the first place! If we know the average firing rate of our neurons F , though, we
can estimate the number of visited time bins for any pair of neurons by calculating FD.
When our neurons all have a fairly consistent firing rate, this estimate will work well. As D
increases, then, we should expect the calculation time to (roughly) grow linearly due to FD
being linear in D.

For first-order TE, estimating the transition probabilities (line 46 of Listing 2) for a pair of
neurons does not take any longer for different data sizes. We can therefore bundle this and
other machine-specific details into a constant C, making our final calculation time formula:

C[N2(FD)] (2)

where N is the number of neurons, D is the duration (number of time bins), F is the average
firing rate, and C is a constant that depends on the actual machine and desired time units.

Higher-Order Algorithm

Our higher-order TE algorithm is a straightforward generalization of the first-order algorithm
in Listing 2. We consider more time bins in either the receiving or sending neuron (or both)
by stacking additional, shifted copies of their respective time-series (see Figure 2). As before,
we then count up the distinct firing patterns by looking at the columns of our stacked series.
Estimating the transition probabilities now requires that we take the additional time bins
into account, resulting in Equation 3.

Tij =
∑
t

p(it+1, i
(k)
t , j

(l)
t ) log

p(it+1|i(k)t , j
(l)
t )

p(it+1|i(k)t )
(3)
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where k is the order of the receiving neuron i and l is the order of the sending neuron j.

Figure 2: Higher-order transfer entropy with a delay of one time bin. The time-series for neurons
i′, i′′, j′, and j′′ are shifted copies of their respective neuron’s time series (backward for i, forward
for j).

The pseudo-code in Listing 3 gives a bird’s eye view of the higher-order algorithm. The
quantity R represents the total order of the calculation, which is k + l + 1. For first-order
TE, R = 3 and we only had three time-series to deal with. For higher-order TE, ij series

will be of length R and the number of distinct firing patterns will be 2R.

Listing 3: Higher-order transfer entropy algorithm for sparse time-series

1 % N i s the number o f neurons
2 % D i s the t o t a l number o f time b ins ( dura t ion )
3 % R i s the t o t a l order ( k + l + 1)
4
5 for i = 1 :N
6 for j = 1 :N
7 i j s e r i e s = [ s h i f t ( t im e s e r i e s ( i ) , −1) ,
8 t im e s e r i e s ( i ) ,
9 . . . , % k s h i f t e d cop i e s o f t ime s e r i e s ( i )
10 t im e s e r i e s ( j ) ,
11 . . . ] % l s h i f t e d cop i e s o f t ime s e r i e s ( j )
12
13 % Sta r t o f f a t the f i r s t time bin wi th a sp i k e ( i ’ , i , j )
14 t = min( cur r ent ( i j s e r i e s ( 1 :R) ) )
15
16 % Count pa t t e rn s f o r a l l t ime b ins wi th s p i k e s
17 counts = zeros (1 , 2ˆR)
18 v i s i t e d = 0
19
20 while t <= D
21 pattern = 0
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22
23 % Go through a l l s e r i e s
24 for s e r i e s i d x = 1 :R
25 % Check f o r a sp i k e at time t
26 i f cur rent ( i j s e r i e s ( s e r i e s i d x ) ) == t
27 % Update f i r i n g pa t t e rn
28 pattern = b i t s e t ( pattern , s e r i e s i d x )
29
30 % Move the sparse time s e r i e s forward
31 move next ( i j s e r i e s ( s e r i e s i d x ) )
32 end
33 end % for s e r i e s i d x
34
35 % Get the next c l o s e s t time bin wi th a sp i k e
36 t = min( cur r ent ( i j s e r i e s ( 1 :R) ) )
37
38 % Count pa t t e rn s [ 0 , 2ˆR)
39 counts ( pattern + 1) = counts ( pattern + 1) + 1
40 v i s i t e d = v i s i t e d + 1
41 end
42
43 % Al l un v i s i t e d time b ins have no s p i k e s ( pa t t e rn 1)
44 counts (1 ) = D − v i s i t e d
45
46 % Ca lcu l a t e TE from j −> i
47 for c = counts
48 . . . % Estimate t r a n s i t i o n p r o b a b i l i t i e s
49 end
50 end % for j
51 end % for i

Higher-Order Algorithmic Complexity

In contrast to the first-order algorithm, higher-order TE depends heavily on the total order
R. There are two places in Listing 3 that depend on R in a way that significantly impacts
performance. First, the loop starting on line 24 will be run R times for each visited time
bin. Remembering that we estimated the number of visited time bins as the average firing
rate times the duration (FD), we can estimate the run time of this loop as FDR. Thus, we
can at least expect the calculation to grow linearly with R when D and N are held constant.

Estimating the transition probabilities no longer takes a fixed amount of time. Instead,
starting on line 47, it will take some amount of time dependent on the length of the counts

variable. As there are 2R distinct firing patterns, count will have size 2R. This means,
unfortunately, that the calculation time will grow exponentially with the total order. In
other words, we expect the calculation time to roughly double each time we increase R by
1. In practice, however, this behavior does not become an issue until R grows beyond 20 or
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so. This is because the actual run time of one iteration of the loop on line 47 is so small
doubling it a handful of times makes little difference until R gets large.

Putting it all together, we get the final TE calculation time formula in Equation 4. FDR
and 2R are added together because the 2R loop is run after the FDR loop (instead of inside
it). C is still a constant that represents machine-specific factors and the desired time units.

C[N2(FDR + 2R)] (4)
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