
Text S1: details of the computational model

Abstract

The mathematical model consisting of partial differential equations that simulate the experiments
involving the diffusion of Ca2+ into a cilium is described in this supplement. This model builds
on earlier studies of both the Ca2+-gated Cl− and CNG ion channels. The scientific computation
procedure that is used to identify the Ca2+-gated Cl− ion channel distributions is discussed.

Introduction

We model the behavior of cytoplasmic Ca2+, buffer and membrane potential in an olfactory cilium
during experiments that involve the Ca2+-gated Cl− ion channels. The primary goal of this work is to
elicit information on the distribution of the Ca2+-gated Cl− ion channels.

Our main goal in this supplement is to restate the mathematical model which was introduced in
Badamdorj [46] and Badamdorj et al. [20] as well as the rapid buffer simplification.

Mathematical Model

Our model consists of equations for the membrane potential v = v(x, t) and calcium concentration
c = c(x, t) where 0 < x < L and L is the length of the cilium. The point where x = 0 is the open
(proximal) end of the cilium, and x = L corresponds to the closed (distal) end. We assume that time
t is in the range of several seconds.

The membrane potential satisfies
1

ra

∂2v

∂x2
= −J (1)

where ra is ciliary intracellular axial resistance and J is the transmembrane current flow through
the Ca2+-gated Cl− channels. We have assumed the capacitance term is negligible as well as the
background conductance (leak current). The Cl− current is given by

J(x, t) = gClρ(x)F (c(x, t))v(x, t)

where gCl is the single Ca2+-gated Cl− channel conductance and ρ = ρ(x) is the distribution of the
Ca2+-gated Cl− channels along the length of the cilium. The Hill function

F (c) =
cn

cn + Kn
1/2

(2)

represents Ca2+ molecules binding and activating the Ca2+-gated Cl− channels [47]. Here n is the Hill
constant and K1/2 is the half-maximal concentration. To complete the description of the membrane
potential problem we append the boundary conditions below

v(0, t) = vBulk and
∂v

∂x
(L, t) = 0. (3)

Here vBulk is the voltage at which the membrane potential is clamped at the open end.
The behavior of the cytoplasmic calcium and buffer complex b(x, t) = [CaB] can be modeled by

the following initial/boundary value problems [48]

∂c

∂t
= DCa

∂2c

∂x2
− FB(c) + (k−b − k+c(BT − b)), (4)

∂b

∂t
= DB

∂2b

∂x2
− (k−b − k+c(BT − b)), (5)
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and

FB(c) = αBSρ
∂

∂t
(F (c))

where k+ and k− are the rate constants for uptake and release of Ca2+ from the buffer. Here DCa

and DB are the diffusivities for the Ca2+ and buffer, respectively. We neglect any Ca2+ pumps, since
no ATP is supplied. BT is the total concentration of buffer (complex plus free buffer). We neglect
calmodulin, which has multiple Ca2+ binding sites associated with the CNG channels [49]. The model
is not very sensitive to the number of Ca2+ binding sites (see the Results section of the main paper).

Assuming that the rapid buffer approximation (RBA) is appropriate (buffer reaction is faster than
the other processes involving calcium) we set KB = k−/k+ then combine (4) and (5) to obtain [48,50]

∂c

∂t
=

1

1 + θ

[

∂2

∂x2

(

DCac + DBBT
c

KB + c

)

− FB(c)

]

(6)

where

b =
BT c

KB + c
and θ =

BT KB

(KB + c)2
.

This model for the evolution of calcium is complete after adding the boundary conditions

c(0, t) = cBulk and
∂c

∂x
(L, t) = 0 (7)

and initial condition
c(x, 0) = 0. (8)

We have represented the fact that there is a free calcium concentration cBulk outside of the pipette
(at the open end of the cilium) and initially the concentration inside is so small that we take it to be
zero. We are especially interested in the behavior of the current,

I(t) =

∫ L

0

J(x, t) dx,

which is experimentally measurable.
Our belief that the RBA is appropriate arises from a nondimensionalization of (4) using K1/2 for

c and BT for b. This reveals that the buffer reaction term is much larger than the other terms that
model the diffusion and binding of Ca2+. (In fact, the factor is around 106). So the reaction term
can be solved independently to determine b in terms of c and then substituted into the new equation
obtained by adding (4) to (5) leading to (6).

Continuing to follow Keener & Sneyd [48], we can reformulate our model by defining

w = φ−1(c) := DCac + DBBT
c

KB + c

where φ−1 is a one-to-one function which we can invert by solving an intermediate quadratic equation
in c to obtain

c =
−(DCaKB − w + DBBT ) +

√

(DCaKB − w + DBBT )2 + 4DCaKBw

2DCa
.

Since
∂w

∂t
=

(

d

dc
φ−1(c)

)

∂c

∂t
= (DCa + DBθ)

∂c

∂t

we have
∂w

∂t
=

DCa + DBθ

1 + θ

[

∂2w

∂x2
− FB(c)

]
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or
∂w

∂t
=

DCa + DBθ

1 + θ + αBSρF ′(φ(w))

[

∂2w

∂x2

]

. (9)

Again we append boundary conditions

w(0, t) = φ−1(cBulk) and
∂w

∂x
(L, t) = 0 (10)

and initial condition
w(x, 0) = 0. (11)

Remark: In situations where 2c/KB << 1, it can be shown that equation (6) is given approximately
by

∂c

∂t
= Deff

∂2c

∂x2
− FB(c) and Deff =

DCa + DBBT

K + BT

[48]. If we further assume that the impact of the binding is small and the cilium is long so we can
neglect the boundary condition at the tip (resulting in a half-line problem), then a closed form solution
for c can be determined. This reduction is reasonable in the case when the buffer is HEDTA since,
then, KB = 14.8 µM.

Inverse Solver

Previous studies [9,19,20] suggest that tall, narrow Gaussian channel distributions provide current
evolution profiles that fit the experimental current data well (see also Fig. 2 of Results). We thus
search for x0, ρ0, and δw so that the current I(t) resulting from

ρ(x) = ρ0exp(−

(

x − x0

δw

)2

)

in our model is a good match to the measured current data for a given specific cilium. Here ρ0 is the
peak height, x0 is the location of that peak and δw is a width. Note the following approximate equality
that holds if the Gaussian is truly narrow with respect to the length of the cilium L and not centered
close to the ends

TCl =

∫ L

0

ρ(x) dx ∼=

∫

∞

−∞

ρ(x) dx = ρ0δw

√
π (12)

where TCl is the total number of channels. So the matching involves choosing x0, ρ0, and δw so that

S(x0, ρ0, δw) =
1

NData

NData
∑

i=1

(I(ti) − IData
i )2

is minimized where (t1, I
Data
1 ), . . . , (tNData

, IData
NData

) are the time and current data points arising from
the experiments (e.g. those plotted in Fig. S4 below). Our search procedure uses asymptotic formulas
from Badamdorj et al. [20] in concert with a dichotomous search algorithm to provide a good guess for
x0 followed by the MATLAB fminsearch code that uses the Nelder-Mead algorithm to find the three
points x0, ρ0, and δw.
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Figure S4. Time course of the experimental current. Current is shown from time 0, when
the cilium was immersed in the buffer/Ca2+ bath. Here t1/2 is the time at which the current
reaches half its maximum depth. In the example shown, t1/2 = 2.8 s and the maximum current
depth ICl = −120 pA.

We describe the dichotomous search part of the overall algorithm more precisely. The reduced
problem studied in Badamdorj et al. [20] indicated that if t1/2 is the time the current profile has

reached half its peak height ICl (see Fig. S4) and DAvg = 1

2
(DCa + DB) then

x0
∼=

√

πDAvgt1/2

1 + DBBT (DCacBulk)−1
and TCl

∼=
ICl

gCl(vBulk − raIClx0)
. (13)

So we search for a minimizing argument x0 of

FM (x0) = S(x0,
ICl

gCl
√

πδw(vBulk − raIClx0)
, δw)

where we used (12) and the second formula in (13) for ρ0 in the sum of squares error formula S.

Dichotomous Search Algorithm:

Choose [aD, bD], ǫD, and iMax.
Set i = 0 and δw = 1.
While i < iMax.

i = i + 1.
cD = (aD + bD)/2.
c−D = cD − ǫD and c+

D = cD + ǫD.
If FM (c−D) > FM (c+

D) then aD = cD else bD = cD.
end while loop.

The dichotomous search code assumes the function FM is unimodal. It is a bracketing approach like the
bisection method for rootfinding. Successive subintervals are determined by bisection and calculation
on the half subinterval in which the minimum resides. A distinguishability coefficient ǫD is used for
this (0 < ǫD << 1). A bracketing interval [aD, bD] ⊂ [0, L] is initially found from the guess for x0 in
(13). We have generally chosen δw = 1 in this search. Of course in the MATLAB search we allow all
three parameters (x0, ρ0, δw) to vary.

Usually, only a moderate number of iterations are done, since there is the second Nelder-Mead
search as well. This fminsearch or Nelder-Mead search starts with a guess using the x0 from the
dichotomous search, a value for ρ0 from (12) and (13), and δw = 1.
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Example

Here we display the graphs from a sample run of our code which searches for an optimum (x0, ρ0, δw)
set of parameters. The results in Fig. S5 are for a 25-µm cilium.
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Figure S5. Results from an example run with the inverse solve r. A, plot of the channel
density function ρ found by the full inverse solver with 8 dichotomous and 8 Nelder-Mead
iterations. B, current from experimental (black) and forward solver with ρ (gray). C, Functional
FM from the dichotomous search displaying that it is unimodal.

The inverse solver was used and produced an answer with a relative least squares error where E2 = 0.024
with

E2 =

√

S(x0, ρ0, δw)
√

1

NData

∑NData

i=1
(IData

i )2
.

Fig. S5A is a plot of the channel distribution function ρ with x0 = 14.4 µm, δw = 0.917, and ρ0 = 1489
channels. Here the channel density was 96.8 channels/µm and total number of channels TCl = 2420.
In Fig. S5B are shown the current data resulting from a forward solution using ρ (gray) as well as
the experimental current data (black). In Fig. S5C there is a plot of FM (x) vs x revealing that it is
unimodal in this example.
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Table S2: Model Data – Parameters and Definitions

Label Name Value References

L Length of cilium 18 µm ≤ L ≤ 78 µm

Ri Ciliary intracellular resistivity 9.2 × 10−4 µm nS−1 [116 mM LiCl]

rc Ciliary radius 0.14 µm 16

ra Ciliary intracellular axial resistance (Ri/πr2
c) 1.5 × 10−2 (nS µm)−1

gCl Single Ca2+-gated Cl− channel conductance (8.0 ± 0.9) × 10−4 nS channel−1 27

n Hill constant 2.00 ± 0.094 21

K1/2 Ca2+-gated Cl− channel activation constant 4.8 ± 0.29 µM 21

vBulk Voltage-clamp potential −50,−40, or + 40 mV

DCa Ca2+diffusion coefficient 300 µm2 s−1 48

k+, k− Buffer reaction rate constants 600 µM s−1, 100 s−1 50

BT Total concentration of buffer 200, 600, or 2000 µM

cBulk Free calcium concentration in bulk 7, 20, or 300 µM

α Conversion factor 2.7 × 10−2 µM µm molecule−1 19

BS Number of binding sites 1 molecule channel−1

KB BAPTA reaction rate 0.157 ± 0.003 µM see Methods

KB DBB reaction rate 1.24 ± 0.05 µM see Methods

KB HEDTA reaction rate 14.8 ± 0.4 µM see Methods

DB Buffer diffusion coefficient 95 µm2 s−1 50

Notes:

• Where uncertainties are shown they represent SEM. Uncertainties given for n and K1/2 are
unpublished values from the data in Kleene & Gesteland [21].

• For the conversion factor above, α = 1/(NAA) where A is the cross-sectional area of the cilium
and NA is Avogadro’s number.

• The reaction rates are apparent dissociation constants between Ca2+ and the buffer, i.e. the
inverses of the apparent association constants determined as described in the Methods section of
the main paper.
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