Bayesian Analysis of the the 55 vertebrate ectodomain sequences listed in Table 1, plus three IR family invertebrate homologous ectodomain sequences.

Figure S1. Bayesian phylogeny of the IR family.
Bayesian phylogeny of the IR family ectodomain inferred from amino acid sequences. Two independent MC3 runs, each replicated twice, yielded identical topologies, indicating excellent convergence. The numbers at the bipartitons correspond to their posterior probabilities (only shown if ≥ 0.95), estimated from their proportion of occurrences among 8002 source trees (4001 $\times 2$, after discarding the first 1000 trees of each run as burnin) used to calculate the majority rule consensus tree shown. The scale indicates the number of expected substitutions per site under the best fitting JTT + G model (shape parameter $\alpha=0.96$), which had a posterior probability of 1 . Compare this figure with Fig. 1 in the paper, which shows the corresponding ML phylogeny.

Statistical analysis of the four Bayesian MC ${ }^{3}$ runs.

Generation plots of $\ln L$ values for the four Bayesian MC 3 runs. Notice the good mixing and convergence of the individual runs

Estimated marginal likelihoods for replicate 1 and 2 of Run1:

Rep Arithmetic mean Harmonic mean

1	-31078.29	-31129.18
2	-31078.93	-31123.45
	AL -31078.56	-31128.49

Model parameter summaries over the replicate 1 and 2 of Run1:

Summaries are based on a total of 8002 samples from 2 replicated runs. Each run produced 5001 samples of which 4001 samples were included.

Generation plots of tree length values for the four Bayesian MC^{3} runs.
Notice the good mixing and convergence of the individual runs

Estimated marginal likelihoods for replicate 1 and 2 of Run2:

Model parameter summaries over the replicate 1 and 2 of Run2:

Summaries are based on a total of 8002 samples from 2 replicated runs. Each run produced 5001 samples of which 4001 samples were included.

Model selection using reversible jump $M C^{3}$ replicate 1 and 2 of Run1:

Amino acid model probabilities:

| Model | Posterior | Probability |
| :--- | :---: | ---: | | Standard |
| :--- |
| Deviation |

Model selection using reversible jump MC 3 replicate 1 and 2 of Run2:

Amino acid model probabilities:

Model	Posterior Probability	Standard Deviation
Poisson	0.000	0.000000
Jones	1.000	0.000000
Dayhoff	0.000	0.000000
Mtrev	0.000	0.000000
Mtmam	0.000	0.000000
Wag	0.000	0.000000
Rtrev	0.000	0.000000
Cprev	0.000	0.000000
Vt	0.000	0.000000
Blosum	0.000	0.000000

