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Branching processes assume that the individual-level processes are independent 

and identically distributed. Moreover, in a branching process, individuals statistically 

follow the same course of events.  The most common branching process in Epidemiology 

is the Crump-Mode-Jagers process (CMJ) [1-7], which is a continuous time branching 

process where each individual follows a stochastic scenario.‡ Certain CMJ processes are 

compatible with ODE models of disease invasion that describe the initial phase of 

exponential growth of an epidemic.§  (See Fig. 3A for an example of numerical 

agreement between a CMJ process and an ODE model of disease invasion.)  R0 is 

conceptually clear when CMJ branching processes are applied to population-level data [5, 
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9]. Given the individual-level course of events of a CMJ process, the expected R0 can be 

easily calculated. In analyzing contact tracing data (assumed to be described by a CMJ 

process) or computer simulations of CMJ processes, one averages the number of 

secondary infections produced by individuals who are no longer infectious. However, in 

calculating these statistics, one realizes that individuals who were recently infected but 

are no longer infectious are not representative, since many of their peers infected at the 

same time are still infectious.  This statistical bias is known as right censoring [10], and it 

is justified by the fact that every individual undergoes the same course of events and that 

the expected R0 calculated for a single individual must match the value obtained by 

averaging over the population. 

For concreteness, let us consider the case of the SI ODE model at disease 

invasion; i.e., the SI ODE applied to the exponential growth phase of an epidemic. 

Mathematically, the R0 of the corresponding CMJ process is β/µ [5]. This is confirmed 

by the numerics in Fig. 3B (open circles) that simulate contact tracing; we obtain a 

plateau value at β/µ in the number of secondary infections. Right censoring manifests as 

a smooth decline in the number of secondary infections from the plateau value.  

Our ILM consists of a growing network of infectious individuals where two 

individuals are linked if one infected the other. New links are added to the network 

according to a population-level rate of β per infectious capita. The new links are 

randomly assigned to the individuals in the network. Infectious individuals are removed 

from the network at a population-level rate μ per infectious capita according to a removal 

rule. Assuming that the number of secondary cases an infectious individual has caused is 

a proxy for the progression of the disease, we choose a removal rule that favors the 

removal of individuals with large number of secondary infections. The probability of an 

infectious individual being removed is taken to be proportional to his/her number of 

secondary infections plus one. We proceed similarly to the case of the CMJ model, 

counting the number of secondary infections of each removed individual and stratifying it 

versus their time of infection. Figure 3B (dots) shows the corresponding numerics. We 
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find a plateau below β/μ that ends with a smooth decline due to right censoring.** 

Therefore, R0 in this case is less than β/μ, although the population dynamics has an 

epidemic threshold parameter of β/μ. 
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Figure 3. Comparison plots between our example ILM and branching process. A The average prevalence 
versus time.  The open circles represent results for the branching process while the dots represent results for 
our ILM. We used β = 0.015, μ = 0.01, and we averaged over 1,000 stochastic realizations.  On a 
logarithmic scale, the results fit very well with a straight line with slope (β−μ) and intercept 0 that 
corresponds to the ODE solution I(t)=I(0)exp[(β−μ)t], where I(0)=1.  B The average number of secondary 
infections stratified versus the date of infection. The open circles represent results for the branching process 
while the dots represent results for our ILM. We used β = 0.015, μ = 0.01, and we averaged over 15,000 
stochastic realizations. The R0 of the branching process is 1.5, while the R0 of our ILM is approximately 
1.4. 

                                                 
** For CMJ processes right censoring is well-defined due to the fact that every individual undergoes the 
same stochastic scenario which generates an expected R0. However, for a more general ILM that does not 
have this feature, right censoring cannot be consistently defined [11]. 
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