CORRECTION

Correction: Cardiorespiratory Fitness, Sedentary Behaviour and Physical Activity Are Independently Associated with the Metabolic Syndrome, Results from the SCAPIS Pilot Study

Örjan Ekblom, Elin Ekblom-Bak, Annika Rosengren, Mattias Hallsten, Göran Bergström, Mats Börjesson

There are errors in Figs 1-5. There are also errors in Table 3 and Table 4. The corrected figures and tables are based on the NCEP Adult Treatment Panel III (ATPIII panel). Please see the correct Figs $1-5$ and the correct Table 3 and Table 4 below.

Citation: Ekblom 0̈, Ekblom-Bak E, Rosengren A, Hallsten M, Bergström G, Börjesson M (2018) Correction: Cardiorespiratory Fitness, Sedentary Behaviour and Physical Activity Are Independently Associated with the Metabolic Syndrome, Results from the SCAPIS Pilot Study. PLoS ONE 13(5):
e0197801. https://doi.org/10.1371/journal. from the SCAPIS Pilot Study. PLoS ONE 13
e0197801. https://doi.org/10.1371/journal. pone. 0197801

Published: May 22, 2018
Copyright: © 2018 Ekblom et al. This is an open access article distributed under the terms of the access article distributed under the terms of th permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

open access

Check for updates

Fig 1. OR for MetS for tertiles of sedentary time. ORs are adjusted for gender, age, education level (university degree vs. not), energy intake (kcal $\cdot \mathrm{d}^{-1}$ in quartiles), smoking habits (regular smoker vs. not) and psycho-social stress (self-reported into four levels), estimated $\mathrm{VO}_{2} \mathrm{max}$ ($\mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}$, in tertiles) and \% of wear time spent in MVPA (in tertiles). ${ }^{*}$ Denotes significant difference to reference group.
https://doi.org/10.1371/journal.pone.0197801.g001

Fig 2. OR for MetS for tertiles of time in LIPA. ORs are adjusted for gender, age, education level (university degree vs. not), energy intake (kcal•d ${ }^{-1}$ in quartiles), smoking habits (regular smoker vs. not) and psycho-social stress (self-reported into four levels), $\%$ of wear time spent in MVPA (in tertiles), and estimated $\mathrm{VO}_{2} \max \left(\mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}\right.$, in tertiles). ${ }^{*}$ Denotes significant difference to reference group.
https://doi.org/10.1371/journal.pone.0197801.g002

Fig 3. OR for MetS for tertiles of time in MVPA. ORs are adjusted for gender, age, education level (university degree vs. not), energy intake (kcal $\cdot \mathrm{d}^{-1}$ in quartiles), smoking habits (regular smoker vs. not) and psycho-social stress (self-reported into four levels), \% of wear time spent in SED (in tertiles), and estimated $\mathrm{VO}_{2} \max \left(\mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}\right.$, in tertiles). ${ }^{*}$ Denotes significant difference to reference group.
https://doi.org/10.1371/journal.pone.0197801.g003

Fig 4. OR for MetS for tertiles of fitness. ORs are adjusted for gender, age, education level (university degree vs. not), energy intake (kcal $\cdot \mathrm{d}^{-1}$ in quartiles), smoking habits (regular smoker vs. not) and psycho-social stress (self-reported into four levels), \% of wear time spent in SED (in tertiles), and \% of wear time spent in MVPA (in tertiles). * Denotes significant difference to reference group.
https://doi.org/10.1371/journal.pone.0197801.g004

Fig 5. Stratified analysis across SED tertiles in high (above median) and low (below median) MVPA. ORs are adjusted for gender, age (yrs.), education level (university degree vs. not), energy intake ($\mathrm{kcal} \cdot \mathrm{d}^{-1}$, in quartiles), smoking habits (regular vs. not), psychosocial stress (self-reported into four levels) and fitness (in tertiles).
https://doi.org/10.1371/journal.pone.0197801.g005

Table 3. Analyzed using ATPIII-cutoffs for uniaxial accelerometry.

			Tertile 2	Tertile 3
Fitness		n		
	Age-gender	784	0.50 (0.31-0.74)	0.09 (0.04-0.18)
	+Lifestyle	709	0.41 (0.26-0.67)	0.08 (0.04-0.18)
	+SED	630	0.46 (0.27-0.79)	0.11 (0.05-0.29)
	+MVPA	630	0.50 (0.29-0.86)	0.12 (0.05-0.28)
	+SED and MVPA	630	0.49 (0.29-0.85)	0.12 (0.05-0.29)
Accelerometry				
SED	Age-gender	932	1.32 (0.85-2.07)	1.83 (1.19-2.81)
	+Lifestyle	831	1.59 (0.97-2.61)	2.37 (1.47-3.83)
	+MVPA	831	1.37 (0.82-2.26)	1.80 (1.09-2.96)
	+Fitness	630	1.74 (0.89-3.42)	2.45 (1.26-4.79)
	+MVPA and Fitness	630	1.55 (0.78-3.10)	1.90 (0.95-3.89)
LIPA	Age-gender	932	0.85 (0.57-1.27)	0.72 (0.47-1.11)
	+Lifestyle	831	0.76 (0.49-1.16)	0.56 (0.35-0.90)
	+MVPA	831	0.81 (0.53-1.26)	0.61 (0.38-0.98)
	+Fitness	630	0.92 (0.53-1.61)	0.52 (0.27-1.01)
	+MVPA and Fitness	630	0.97 (0.55-1.71)	0.52 (0.26-1.02)
MVPA	Age-gender	932	0.33 (0.21-0.50)	0.31 (0.20-0.47)
	+Lifestyle	831	0.34 (0.22-0.54)	0.33 (0.21-0.52)
	+SED	831	0.36 (0.23-0.57)	0.39 (0.24-0.63)
	+Fitness	630	0.26 (0.14-0.50)	0.31 (0.17-0.57)
	+SED and Fitness	630	0.28 (0.14-0.53)	0.36 (0.19-0.67)
TPA	Age-gender	932	0.36 (0.23-0.54)	0.35 (0.23-0.54)
	+Lifestyle	831	0.34 (0.21-0.53)	0.32 (0.22-0.55)
	+SED	831	0.37 (0.22-0.60)	0.40 (0.23-0.71)
	+MVPA	831	0.46 (0.27-0.77)	0.68 (0.32-1.44)
	+Fitness	630	0.42 (0.23-0.76)	0.33 (0.17-0.62)
	+SED, MVPA and Fitness	630	0.84 (0.38-1.84)	1.31 (0.39-4.46)
SED bouts	Age-gender	930	1.07 (0.68-1.70)	1.73 (1.41-2.64)
	+Lifestyle	831	1.20 (0.74-1.95)	2.21 (1.40-3.49)
	+MVPA	831	1.09 (0.67-1.80)	1.81 (1.13-2.90)
	+Fitness	630	0.96 (0.50-1.86)	1.97 (1.06-3.64)
	+MVPA and Fitness	630	0.92 (0.47-1.81)	1.67 (0.89-3.15)
SED breaks	Age-gender	932	0.74 (0.50-1.11)	0.61 (0.40-0.93)
	+Lifestyle	831	0.63 (0.41-0.98)	0.50 (0.31-0.80)
	+MVPA	831	0.69 (0.44-1.07)	0.56 (0.35-0.91)
	+Fitness	630	0.61 (0.34-1.09)	0.54 (0.28-1.03)
	+MVPA and Fitness	630	0.68 (0.38-1.23)	0.56 (0.29-1.09)

https://doi.org/10.1371/journal.pone.0197801.t001

Table 4. Analyzed using ATPIII-cutoffs for triaxial accelerometry.

			Tertile 2	Tertile 3
Fitness		n		
	Age-gender	784	0.50 (0.31-0.74)	0.09 (0.04-0.18)
	+Lifestyle	709	0.41 (0.26-0.67)	0.08 (0.04-0.18)
	+SED	633	0.51 (0.30-0.86)	0.11 (0.05-0.27)
	+MVPA	633	0.49 (0.29-0.83)	0.12 (0.05-0.27)
	+SED and MVPA	633	0.51 (0.30-0.88)	0.12 (0.05-0.28)
Accelerometry				
SED	Age-gender	938	1.28 (0.80-2.03)	2.47 (1.60-3.83)
	+Lifestyle	835	1.40 (0.83-2.35)	3.15 (1.95-5.10)
	+MVPA	835	1.24 (0.73-2.11)	2.45 (1.46-4.12)
	+Fitness	633	2.23 (1.09-4.58)	3.53 (1.76-7.09)
	+MVPA and Fitness	633	1.97 (0.95-4.11)	2.72 (1.31-5.63)
LIPA	Age-gender	938	0.56 (0.37-0.83)	0.50 (0.33-0.77)
	+Lifestyle	835	0.49 (0.32-0.75)	0.37 (0.23-0.59)
	+MVPA	835	0.54 (0.35-0.84)	0.42 (0.26-0.68)
	+Fitness	633	0.63 (0.36-1.10)	0.40 (0.21-0.77)
	+MVPA and Fitness	633	0.71 (0.40-1.26)	0.42 (0.22-0.81)
MVPA	Age-gender	938	0.43 (0.29-0.65)	0.39 (0.26-0.59)
	+Lifestyle	835	0.44 (0.28-0.69)	0.32 (0.24-0.60)
	+SED	835	0.52 (0.33-0.83)	0.55 (0.33-0.90)
	+Fitness	633	0.43 (0.24-0.79)	0.36 (0.19-0.66)
	+SED and Fitness	633	0.51 (0.28-0.95)	0.47 (0.24-0.90)
TPA	Age-gender	930	0.36 (0.25-0.55)	0.35 (0.23-0.54)
	+Lifestyle	835	0.56 (0.36-0.86)	0.33 (0.20-0.53)
	+SED	835	0.76 (0.46-1.24)	0.58 (0.30-1.12)
	+MVPA	835	0.65 (0.40-1.08)	0.44 (0.22-0.90)
	+Fitness	633	0.58 (0.33-1.02)	0.32 (0.16-0.62)
	+SED, MVPA and Fitness	633	1.31 (0.57-2.99)	1.42 (0.39-5.21)
SED bouts	Age-gender	930	1.06 (0.68-1.66)	1.73 (1.14-2.63)
	+Lifestyle	835	1.16 (0.71-1.89)	2.24 (1.42-3.53)
	+MVPA	835	1.08 (0.66-1.76)	1.79 (1.12-2.87)
	+Fitness	633	1.35 (0.70-2.58)	2.30 (1.22-4.32)
	+MVPA and Fitness	633	1.27 (0.66-2.49)	1.80 (0.93-3.48)
SED breaks	Age-gender	938	0.74 (0.50-1.10)	0.52 (0.34-0.81)
	+Lifestyle	835	0.66 (0.43-1.02)	0.47 (0.29-0.75)
	+MVPA	835	0.76 (0.49-1.17)	0.55 (0.34-0.88)
	+Fitness	633	0.85 (0.48-1.52)	0.54 (0.29-1.02)
	+MVPA and Fitness	633	1.06 (0.58-1.92)	0.65 (0.34-1.24)

https://doi.org/10.1371/journal.pone.0197801.t002

Reference

1. Ekblom Ö, Ekblom-Bak E, Rosengren A, Hallsten M, Bergström G, Börjesson M (2015) Cardiorespiratory Fitness, Sedentary Behaviour and Physical Activity Are Independently Associated with the Metabolic Syndrome, Results from the SCAPIS Pilot Study. PLoS ONE 10(6): e0131586. https://doi.org/10. 1371/journal.pone. 0131586 PMID: 26120842
