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Abstract

Psoriasis is a common inflammatory skin disease, with considerable genetic contribution.

Genome-wide association studies have successfully identified a number of genomic regions

for the risk of psoriasis. However, it is challenging to pinpoint the functional causal variants

and then further decipher the genetic mechanisms underlying each region. In order to priori-

tize potential functional causal variants within psoriasis susceptibility regions, we integrated

the genetic association findings and functional genomic data publicly available, i.e. histone

modifications in relevant immune cells. We characterized a pervasive enrichment pattern of

psoriasis variants in five core histone marks across immune cells/tissues. We discovered

that genetic alleles within psoriasis association regions might influence gene expression lev-

els through significantly affecting the binding affinities of 17 transcription factors. We estab-

lished a catalog of 654 potential functional causal variants for psoriasis and suggested that

they significantly overlapped with causal variants for autoimmune diseases. We identified

potential causal variant rs79824801 overlay with the peaks of five histone marks in primary

CD4+ T cells. Its alternative allele affected the binding affinity of transcription factor IKZF1.

This study highlights the complex genetic architecture and complicated mechanisms for

psoriasis. The findings will inform the functional experiment design for psoriasis.

Introduction

Psoriasis is a common chronic immune-mediated inflammatory skin disease, well character-

ized by abnormal hyperproliferation and differentiation of keratinocytes, and infiltration of T

lymphocytes in the psoriatic lesion [1, 2]. Despite the mechanism is unclear, the incidence of

psoriasis is widely recognized to be attributed to genetic variants and environmental factors

[2]. Recently, the understanding for genetic contribution to the risk of psoriasis has been
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dramatically improved through genome-wide association studies (GWASs) in multiple ethnic

populations, which have totally identified less than 100 psoriasis susceptible regions [3–16].

The GWAS findings are typically single nucleotide polymorphisms (SNPs, termed as

“tagSNPs”). The majority of them act as proxies for causal variants through linkage disequilib-

rium (LD) [17]. It is crucial to identify the causal variant within each region in order to deci-

pher disease mechanism in psoriasis [18].

However, the complex genetic architecture of psoriasis poses a great challenge [19]. Firstly,

the causal variants are usually highly correlated with tagSNPs; however, there are normally

hundreds and even thousands of such variants linking with tagSNPs in each region. As a result,

it is hard to distinguish the real one for the complex LD structure. Secondly, the majority of

GWAS implicated SNPs are non-coding genome sequences, which in the past have been con-

sidered to be the unexplored territory. It remains challenging to interpret its biological conse-

quence [20]. Nevertheless, it is widely believed that a true causal variant affects disease

biological pathophysiology through changing the activities and function of specific cell types

and/or tissues by complicated biological pathways [21]. To interrogate the disease mechanism

underlying each causal variant, it is critical to use the most biological relevant cells or tissues.

Nowadays, more and more high throughout functional genomic data for hundreds of cells

or cell lines has become publicly available, especially the data from the Encyclopedia of DNA

Elements (ENCODE) Consortium and RoadMap epigenetics Project [22, 23]. The ENCODE

Consortium has defined hundreds of thousands of cell-type-specific distal regions and demon-

strated that the non-coding genome contained well-demarcated gene regulatory regions, for

example gene enhancer, promoter, transcription factor binding sites (TFBS) [22, 24], in some

of which the GWAS findings clearly and significantly enrich for common diseases/complex

traits [19, 20, 25, 26]. The functional genomic data provides a great opportunity to interpret

known disease GWAS findings. The integrative analysis of GWAS evidences and functional

genomic data in the disease-specific cells/tissues would help prioritize the causal variants in

GWAS regions. In 2013, Rhie SK et al. interrogated 71 risk loci in functional genomic data for

human mammary epithelial cells (HMEC) and three other cell lines, and concluded 1,005

potential functional SNPs for breast cancer [27]. In 2014, 51 variants were implicated within

gene promoters and enhancers for colorectal cancer by using gene expression data from nor-

mal and tumor cells. Especially, the regulatory effect of one implicated functional enhancer

variant was then demonstrated through clustered regularly interspaced short palindromic

repeats (CRISPR) nucleases technology [21].

To this end, we hypothesized that to use the functional genomic data in biologically relevant

immune cells/tissues would narrow down the functional variants and elucidate the biological

mechanisms in psoriasis GWAS regions. In the present study, we characterized the enrich-

ment of psoriasis SNPs in chromatin states across immune cells/tissues, and then integrated

the psoriasis SNPs and histone marks peaks in relevant CD4+ T cells. We concluded a catalog

of potential putative functional variants (PFV) for psoriasis. The findings shed light on the dis-

ease mechanisms and will inform the designs of functional experiments for psoriasis.

Materials and methods

Psoriasis GWAS variants

We identified 75 genetic variants (hereafter “tagSNPs”) through an extensive manual literature

review, which have been established by March 2015 for the risk of psoriasis with genome-wide

significant evidence in GWASs of Eastern Asian and European populations. The full list of

tagSNPs is available in S1 Table.
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Enrichment of histone marks and transcription factors

To evaluate and characterize the pattern of psoriasis tagSNPs in functional genomics data of

psoriasis relevant cells, we implemented an enrichment test through variant set enrichment

(VSE) R package [28]. We identified 26 types of human primary cells/cell lines, mainly pri-

mary immune cells and skin keratinocytes cells, in NIH Roadmap Epigenomics Consortium.

They have been widely suggested to be relevant to the pathophysiology of psoriasis. We then

downloaded the consolidated narrow peaks data of five core histone marks for these cells (i.e.

H3K27ac, H3K27me3, H3K36me3, H3K4me1, and H3K4me3, S2 Table)[29]. The quality and

peak calling have been described in detail in previous studies and on website http://egg2.wustl.

edu/roadmap/web_portal/processed_data.html#ChipSeq_DNaseSeq [30]. An enrichment

analysis was also conducted through R VSE package in ChIP-seq data for 111 transcription

factors (TFs). We downloaded the narrow peaks data for TFs within GM12878 lymphoblastoid

cell line from ENCODE consortium [24]. The peaks were quantified by conservative irrepro-

ducible discovery rate (IDR).

The VSE R package computes whether psoriasis associated variant set (AVS), i.e. a set of

psoriasis tagSNPs, is significantly enriched in tested genomic feature, i.e. histone marks and

TFs. For each of the 75 tagSNPs, we obtained its respective LD block, and all correlated SNPs

that were in high LD (r2� 0.8 in 1000 Genomes Project EUR or EAS populations). In order to

compute the enrichment score and its respective p value, we built null matched random vari-

ant sets (MRVSs) of size 1,000. The MRVSs are identical to AVS block by block on minor allele

frequency (MAF), proximity to transcription start sites (TSS), and LD structure. All of these

analyses were accomplished in R 3.4.2. A p value< 0.05 was used as significant threshold after

Bonferroni correction of number of histone marks.

Prioritization of functional SNPs

We searched exhaustively for all highly correlated SNPs (LD r2� 0.8) (termed as “correlated

SNPs”) residing in a 1Mb-window centered on the 75 tagSNPs in the 1000 Genomes Project

Asian and European populations reference panels, respectively (May 2012 data release, http://

www.1000genomes.org/). We downloaded five core chromatin state files (i.e. H3K27ac,

H3K27me3, H3K36me3, H3K4me1, and H3K4me3) for CD4 naïve primary peripheral blood

T cells from the NIH RoadMap Epigenomic Consortium (http://www.ncbi.nlm.nih.gov/geo/

roadmap/epigenomics/). Increased frequencies of CD4+ T cells have been consistently discov-

ered in psoriatic skin lesions [31]. Besides, a role of Th1 CD4 T cells was initially suspected

and Th17 CD4 T cells have been shown to play a major role in psoriasis recently [32]. We que-

ried the biological function for each correlated SNP in functional genomic data sets. The analy-

ses were accomplished in R/Bioconductor FunciSNP package [33].

We categorized the correlated SNPs into five groups by the priority of exonic variants, gene

promoters, enhancers, transcribed, and repressed regions. Coding exon data was downloaded

from the UCSC genome table browser [34]. The gene promoters, enhancers, transcribed,

and repressed regions, were identified by the overlaps of histone modifications H3K4me3,

H3K27ac or H3K4me1, H3K36me3, and H3K27me3, respectively. Gene promoter variants

were limited within -1000 and +100 base pairs from TSS. All statistical tests were implemented

in R 3.4.2.

Variants annotation

We used bioinformatics tools to characterize the correlated SNPs’ functional potentials, e.g.

consequence on protein structures for coding variants and perturbation of TF binding affinity

for non-coding variants. The functional consequences for exonic variants were analyzed
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through PolyPhen2 and SIFT using default parameters [35, 36]. For the non-coding genome

sequences, they might contribute to the risk of psoriasis through regulating gene expression

via various mechanisms, for example affecting TF binding affinity. We searched for the TF

motifs binding effect to each of the correlated SNPs using motifbreakR R package [37].

Results

Enrichment of histone marks and transcription factors in psoriasis

Aberrant immune activities have been implicated widely in the pathophysiology of psoriasis.

Genetic variants might affect the risk of psoriasis through regulating the immune levels. To

characterize the enrichment pattern of psoriasis tagSNPs across functional genomic biofea-

tures in various immune cells, we evaluated the enrichment of 75 psoriasis tagSNPs against

five core histone marks in each of 26 relevant tissue/cell. We found that psoriasis genetic vari-

ants were pervasively significantly enriched in the five core histone marks in 26 relevant cells

and cell lines (Fig 1). We showed the enrichment pattern in each type of cells was almost con-

sistent especially for histone marks H3K27ac, H3K4me1, and H3Kme3 though a difference

existed (Fig 1). Among the 111 TFs in human blood lymphoblastoid cell lines, we identified

17 TFs, for example EED (enrichment fold = 4.80, p = 8.20E-5), RUNX3 (enrichment fold =

4.11, p = 2.03E-3), IKZF1 (enrichment fold = 4.33, p = 7.39E-4), and TCF12 (enrichment

fold = 4.09, p = 2.50E-3) that significantly bind with psoriasis genetic variants (Fig 2 and S3

Table).

Psoriasis potential functional variants

Within psoriasis susceptibility regions, there were totally 1,609 correlated SNPs strongly link-

ing with the 75 unique psoriasis tagSNPs (LD r2� 0.8). We identified 654 SNPs of them over-

lapped with at least one of the five core histone marks in CD4+ primary T cells (S4 Table).

Given the key pathogenic role of CD4+ primary T cells in psoriasis pathophysiology, these 654

SNPs are considered as PFV within psoriasis GWAS regions. In order to verify the functional

potential of PFV set, we tested the overlapping between these 654 SNPs and the previously

Fig 1. The enrichment pattern of five core histone markers in 26 relevant tissues/cells for psoriasis. E029:CD14_Primary_Cells; E030:

CD15_Primary_Cells; E031:CD19_Primary_Cells_Cord_BI; E032:CD19_Primary_Cells_Peripheral_UW; E033:CD3_Primary_Cells_Cord_BI;

E034:CD3_Primary_Cells_Peripheral_UW; E035:CD34_Primary_Cells; E036:CD34_Cultured_Cells; E037:CD4_Memory_Primary_Cells; E038:

CD4_Naive_Primary_Cells; E039:CD4+_CD25-_CD45RA+_Naive_Primary_Cells; E040:CD4+_CD25-_CD45RO+_Memory_Primary_Cells;

E041:CD4+_CD25-_IL17-_PMA-Ionomycin_stimulated_MACS_purified_Th_Primary_Cells; E042:CD4+_CD25-_IL17+_PMA-

Ionomcyin_stimulated_Th17_Primary_Cells; E043:CD4+_CD25-_Th_Primary_Cells; E044:CD4+_CD25+_CD127-_Treg_Primary_Cells; E045:

CD4+_CD25int_CD127+_Tmem_Primary_Cells; E046:CD56_Primary_Cells; E047:CD8_Naive_Primary_Cells; E048:CD8_Memory_Primary_Cells;

E057:Penis_Foreskin_Keratinocyte_Primary_Cells_skin02; E058:Penis_Foreskin_Keratinocyte_Primary_Cells_skin03; E062:

Peripheral_Blood_Mononuclear_Primary_Cells; E116:GM12878_Lymphoblastoid; E124:Monocytes-CD14+_RO01746; E127:

NHEK-Epidermal_Keratinocytes.

https://doi.org/10.1371/journal.pone.0196635.g001
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implicated causal variants for autoimmune diseases [38]. Among the 654 PFVs, there were 148

SNPs overlapping with the autoimmune diseases causal variants. The proportion of overlap-

ping was statistically significantly higher than that among the background variants (N = 973)

that are strongly linked with the 75 unique tagSNPs but non-PFV (Z statistics = 14.47,

p = 1.43E-4). Of these 654 potential functional SNPs, we identified 16 exonic sequences. In

addition, we found 16, 477, 109, and 36 SNPs of them within gene putative promoters, enhanc-

ers, transcribed, and repressed regions, respectively (Fig 3).

Fig 2. The enrichment of transcription factors within psoriasis association regions. The x-axis denotes the -log

transformed p values in the transcription factors enrichment test. The y-axis represents the enrichment fold size when

comparing with the null distribution. Each circle in the plot denotes a transcript factor. The top transcription factors

with enrichment p value< 0.05 are colored in pink. The embedded plot shows the names the names of transcription

factors with enrichment fold size over 4.

https://doi.org/10.1371/journal.pone.0196635.g002

Fig 3. The category and summary statistics of 654 potential putative functional variants for psoriasis in CD4+

primary T cells.

https://doi.org/10.1371/journal.pone.0196635.g003
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Annotation of potential putative functional variants

Of the 16 exonic variants, we identified a missense variant SNP rs27044 in exon of 15 in the

gene ERAP1. In addition, the majority of 654 potential putative functional variants were non-

coding sequences suggesting they might contribute to the risk of psoriasis through regulating

gene expression via various mechanisms, for example affecting TF binding affinity. We studied

further SNP rs79824801 in the PFV set as an example. SNP rs79824801 is strongly linked with

psoriasis tagSNP rs2066819 (LD r2 > 0.9 in both European and Eastern Asian populations in

1000 Genomes Project) on chromosome 12. It was simultaneously located in peaks of multiple

histone marks, i.e. H3K27me3, H3K27ac, H3K4me1, H3K3me3, and H3K36me3 in CD4+ pri-

mary T cells, suggesting its potential functional role in CD4+ primary T cells. We found that

its sequence changed the binding affinity of TF IKZF1 that was suggested with significant

enrichment (Fig 4). The binding effect with the alternative allele C was significantly lower.

Discussion

In the present study, we implemented an integrative analysis to interrogate each highly linked

variant of 75 unique psoriasis GWAS findings and to prioritize potential putative functional

variants from background genetic variants within psoriasis GWAS association regions. We

established eventually a catalog of 654 potential putative functional variants and suggested that

they were significantly enriched among the causal variants for autoimmune diseases. We char-

acterized a pervasive enrichment pattern of psoriasis GWAS findings in five core histone

marks across various psoriasis relevant cells/tissues. We discovered 17 TFs significantly bind-

ing with psoriasis GWAS regions. This study highlights the complex genetic architecture and

Fig 4. The binding effect of transcription factor IKZF1with potential putative functional variant rs79824801.

Genomic coordinates are shown in the bottom panel. The position of rs79824801 is indicated with red and blue

bounding box for reference and alternative alleles, respectively. The position of rs79824801 is represented in light blue

box in the middle panel., and. The top panel shows the motif logos generated from motifstack, with the position of

rs79824801 labeled in red.

https://doi.org/10.1371/journal.pone.0196635.g004
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biological mechanisms for psoriasis. The findings would inform the functional experiment

design for psoriasis.

In order to investigate the functional role of genetic variants which have been identified in

GWASs, to use the most relevant cells is pivotal. It is challenging to prioritize the relevant cells

for human complex diseases. It has been suggested that the integrative analyses with publicly

available functional genomic data will help narrow down the spectrum of effector cells [21,

27]. Aberrant immune activities have been widely identified in the pathogenesis of psoriasis.

However, the main effector immune cells are still unclear. We integrated psoriasis GWASs

association variants with epigenomic data from a wide spectrum of immune tissues/cells. We

prioritized a number of immune cells in the pathogenesis of psoriasis, and identified a perva-

sive enrichment pattern of psoriasis variants within epigenetic histone marks from immune

tissues/cells. This study suggests that it is challenging to identify the effector immune cells, and

therefore choose the most appropriate cells to study the biological consequences of psoriasis

causal variants in the post GWAS era. These findings highlight a complex disease mechanism

of psoriasis.

In the present study, we integrated psoriasis GWAS association variants with publicly avail-

able functional genomic data in CD4+ primary T cells, and achieved a relatively comprehen-

sive catalog of PFVs in psoriasis GWAS regions. Of them, SNP rs27044 is predicted to be a

missense variant in the gene ERAP1, which results in an amino acid change of glutamic acid

from glutamine in the protein product, then supporting its causal role of ERAP1 gene in this

region. SNP rs27044 has been prioritized to be a causal variant for autoimmune diseases [38],

and interacts with HLA-C�06 in the development of early onset psoriasis patients [39]. Recent

studies have shown a CC haplotype of SNPs rs30187/rs27044 within the gene ERAP1 confers a

protection effect to psoriatic arthritis (PsA) [40]. Though further experiments are warranted,

we suggest SNP rs27044 as a causal variant in the gene ERAP1 for psoriasis.

We discovered in primary CD4+ T cells that the majority of psoriasis PFVs are resided in

non-coding genome regions, especially in gene enhancer elements. This finding is consistent

with previous discoveries that a dominant overlap of human complex disease GWAS findings

with genetic variants within gene enhancers [41]. Given key role of the non-coding variants in

the risk of human complex diseases, they may contribute through regulating gene expression

level rather than altering protein structure [42]. However, the affected mechanisms of gene

expression levels are complex and largely remain unclear. A well-known common mechanism

is through binding a specific TF [43]. We conducted a TF enrichment analysis in psoriasis

GWAS variants, and screened 17 TFs significantly binding to the psoriasis variants. Some of

these top TFs play a role in the processes of cytokine regulation, and cell differentiation and

proliferation, which are shown to be important in the etiology of psoriasis [44]. For example,

runt-related transcription factor 3 (RUNX3) has been reported to be a susceptibility gene for

psoriasis and promotes Th1 cells differentiation through binding with T-bet [5, 45]. A recent

study found that increased miR-138 regulates the balance of Th1/Th2 through inhibiting

RUNX3 expression in CD4+ T cells in psoriasis [46]. The inhibition of RUNX3 reduced the rel-

evant cytokines levels, and decreased the frequency of Th17 and Th22 cells in CD4+ T cells

from psoriasis patients [47]. Taken together, these results suggest that RUNX3 may act a prom-

ising therapeutic target for psoriasis. We prioritized SNP rs79824801 on chromosome 12 as a

PFV in IL23A region for psoriasis. This SNP resides in multiple histone peaks in CD4+ primary

T cells. Its alternative allele would change the binding effect of TF IKZF1 that was suggested in

our TF enrichment analysis in this study. IKZF1 played multiple important roles on regulators

of lymphocyte differentiation [48]. Though the evidence between IKZF1 and the risk of psoria-

sis is limited, several studies have demonstrated its relationship with autoimmune disease sys-

temic lupus erythematosus (SLE) [49]. IKZF1 has been suggested to affect the STAT4 and IFN
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pathways [50–52], both of which involve in the pathogenesis of psoriasis [53–55]. Further

studies are worth to validate rs79824801 in an independent sample, to quantify the binding

affinity of IKZF1 at this site, and to evaluate the consequence of IFN signaling in the biological

mechanism of psoriasis.

There are several limitations. Firstly, we only evaluated the roles of common variants. Sec-

ondly, the functional genomic data was not extremely comprehensive regarding its sequencing

depth and study sample size. We did not correct for the number of studied tissues/cells in the

enrichment analyses. Finally, we only used epigenetic profiles from relevant normal tissues/

cells. The epigenetic data from disease tissues/cells is lacking.

In summary, we characterized a complex genetic architecture of psoriasis, and established a

relatively comprehensive catalog of common potential putative functional variants for psoria-

sis. The findings would guide the functional experiments for psoriasis in future.
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