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Abstract

This work examines translational science in cancer based on theories of innovation that

posit a relationship between the maturation of technologies and their capacity to generate

successful products. We examined the growth of technologies associated with 138 antican-

cer drugs using an analytical model that identifies the point of initiation of exponential growth

and the point at which growth slows as the technology becomes established. Approval of

targeted and biological products corresponded with technological maturation, with first

approval averaging 14 years after the established point and 44 years after initiation of asso-

ciated technologies. The lag in cancer drug approvals after the increases in cancer funding

and dramatic scientific advances of the 1970s thus reflects predictable timelines of technol-

ogy maturation. Analytical models of technological maturation may be used for technological

forecasting to guide more efficient translation of scientific discoveries into cures.

Introduction

There has been extensive debate about the efficacy of investments made in cancer research

since the 1970s and how to achieve better results in the future. There is little debate that these

investments have produced unprecedented insights into cancer biology. This progress is evi-

dent in the near-exponential growth in academic publications, as well as salient discoveries in

oncogenesis, apoptosis, cancer immunology, genomics[1], and the emergence of targeted ther-

apeutics[2], biologicals, cell therapies, and nanoparticles[3]. These investments have not, how-

ever, had temporal impacts on increasing annual anti-cancer drug approvals or survival for

most major cancers[4, 5].

There is little theoretical understanding of why the benefits of cancer research have not

been proportional to the rate of scientific progress. There are many opinions. A common

view is that previous research has positioned science on the threshold of dramatic new break-

throughs in clinical care[5–7]. Some have proposed that the lack of progress reflects shortcom-

ings in the structure of the scientific enterprise[8]. This view has spawned initiatives focused

on: aligning research funding with disease burden[9]; collective formation, collaboration, and
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data sharing among researchers[10, 11], closer connections between “bench and bedside,”[5]

greater emphasis on quality preclinical research[12], accelerated clinical trials of promising

technologies[13], and reconsideration of the biopharmaceutical industry’s role in translational

science[5, 14]. Others have argued that the emphasis on curing cancer is misguided, and that

more research should be redirected at prevention[4, 15]. Some have even argued that the com-

plexity of cancer represents an exceptional barrier for conventional therapeutics[16], or even

that cancer represents an emergent property of a complex system that may not be amenable to

reductionist understanding[17]. Each of these perspectives has addressed discrete elements of

translation without providing a cohesive, theoretical framework for evidence-based improve-

ment of this process. This work examines the connection between advances in cancer biology

and development of new anticancer drugs through the lens of innovation theories that posit a

relationship between the evolution of basic science and technology, and the capacity of these

technologies to generate successful products.

Contemporary practices of research and development are often described in terms of a lin-

ear model of innovation which, in its simplest form, posits that the insights and inventions

arising from pure basic science research provide the conceptual and material foundation for

applied research and development, which leads to the emergence and commercialization of

new products[18–20]. There has been extensive scholarly debate about the form, strengths,

and weaknesses of this model both as a description of the translational process, as well as its

utility in informing, or constraining, the progress of innovation[18, 21, 22].

Nevertheless, Godin has noted that “The model has been very influential. Academic organi-

zations as a lobby for research funds and economists as expert advisors to policy makers have

widely disseminated the model, or the understanding based thereon, and have justified gov-

ernment support of science using such a model.”[19] The concept of a progression from basic

science to applications is reflected in the emphasis on the importance of basic research in the

science establishment envisioned by Vannevar Bush in The Endless Frontier[19, 22, 23]. Bush

wrote: “Basic research leads to new knowledge. It provides scientific capital. It creates the fund

from which the practical applications of knowledge must be drawn.”[23] The Bayh-Dole Act

provided a mechanism for this progression from basic research to practical applications of

knowledge by establishing a legal process by which advances arising from government-funded,

basic research in academic or government laboratories would be “transferred” to industry

for subsequent development[24]. This progression is explicitly represented in the nine stages

of the Technology Readiness Assessment, which is commonly required for Department of

Defense (DOD), NASA, and other government contracts[25–27]. An analogous progression

is also reflected in the conception of translational science as a series of phases beginning with

T0, basic science discovery, and proceeding to T1, applied bench to bedside research, and then

T2, the development of new products and clinical practice[28, 29]. This progression is also evi-

dent in the strategy, formulated in the 1970s, to focus investment aimed at curing cancer on

“massive investment in basic science” based on “the assumption that unbiased fundamental

research would hold the key to unlocking the secrets of cancer.”[1]

The work of Christensen and others have addressed the relationship between innovation

and the advance of science and technology[30, 31]. Their work addressed the observation that

there was often a profound lag in the emergence of successful products following radical scien-

tific or technological insights or inventions[31–33]. The essential observation is that while

nascent scientific insights and inventions arising from basic research embody considerable

promise, products based on immature technologies commonly fail to achieve the performance

standards required by existing markets. These studies also suggested that as technologies

mature, they can reach a threshold required to meet, or surpass, the standards required by

established markets[34, 35].
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PLOS ONE | https://doi.org/10.1371/journal.pone.0174538 March 27, 2017 2 / 19

https://doi.org/10.1371/journal.pone.0174538


Various methods have been described for assessing and forecasting the growth of technolo-

gies[36]. The “technology readiness assessments,”[25–27] commonly used in the aerospace

and defense industries, involve use of a rigorous scale for assessing the maturation of technolo-

gies, from the initial observation and reporting of basic principles to the operational proof of

technological utility. Other methods involve qualitative, or judgmental, methods based on

expert opinions, such as the often-used Delphi method, or quantitative analysis involving

extrapolation, trend analysis, modeling, or simulation[36, 37]. An important insight into tech-

nology forecasting has been the observation that technology growth in many different sectors,

such as semiconductors, communications, and transportation, exhibits a characteristic growth

pattern, classically described as an S-curve[31–35, 38]. The S-curve can be divided into several

phases; a nascent phase in which a new technology is initiated from precursor technologies by

an insight or invention, a growing phase of exponential advance, and an established phase in

which limits are encountered and advances slow. An extensive body of literature has examined

the implications of the S-curve of technology growth for both sustaining and disruptive inno-

vation and successful product development[31–33, 35, 38, 39].

As in other technology sectors, in biopharmaceutical development there is often a substan-

tial lag between important scientific or technological advances and the emergence of new

products. Cockburn and Henderson identified a 19-year lag between publications describing

publicly funded “enabling discoveries” underlying 21 “high impact” drugs and first FDA

approvals[40]. Toole demonstrated a 17–24 year lag between government funding for basic

research and FDA approval of new drugs associated with that research[41]. A 2006 analysis of

the impact of research funding by the Congressional Budget Office identified an 18-year lag

between public funding of basic research and approval of new drugs based on this research,

but did not examine reasons for this lag[42]. The work of Lichtenberg[43] addressed the lag

between publications and improved cancer outcomes, concluding that published articles that

cite research funding are more strongly correlated with clinical outcomes after 10 years than

they are in contemporaneous years. A 2011 review by RAND Europe estimates that there was

a 17-year lag between advances in basic science and product approvals based on this science,

but also concluded “little is known about time lags and how they should be managed. This lack

of knowledge puts those responsible for enabling translational research at a disadvantage.”[44]

Biomedical science provides few metrics for measuring the advance of technologies analo-

gous to measures of chip density, computational or communication speed, or tensile strength

used in other technology sectors[45]. Biopharmaceutical development, more than other tech-

nology sectors, is closely linked to basic science[46], and tends to be highly empirical in nature

and less amenable to normative analysis[47].

We have previously investigated patterns of innovation in biotechnology using a biblio-

metric-based approach, which uses the accumulation of knowledge as a surrogate measure of

scientific and technological advance[45]. Bibliometric methods have been used for S-curve

modeling previously in sectors such as fuel efficiency, food safety, and optical storage[48] and

have also been used to study the relationship between the growth of knowledge about specific

cancers and reductions in the mortality rate[43]. Our initial study looked for qualitative pat-

terns in the number of publications related to three novel biotechnologies—monoclonal anti-

bodies, gene therapies, and nucleotide therapies—as well as subsets related to contributing

technologies within each of these sectors. This work suggested that the cumulative number of

publications had growth patterns consistent with those exhibited by performance metrics in

other technology sectors with distinct nascent, exponential, and established stages. Most

importantly, none of these three technologies generated successful products in the nascent or

growing phases of technology growth of the S-curve. The first monoclonal antibody products

came to market only after the technology reached an established phase, more than 20 years
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after the initiation and discovery of this technology[45], as did the first successful nucleotide

therapeutic and approved gene therapy in the years after that report. Monoclonal antibodies

matured through a series of technologies: from mouse proteins produced using hybridomas,

to chimeric and humanized proteins, and eventually fully human proteins produced using

recombinant technologies[45]. Similarly, nucleotide therapeutics matured through the intro-

duction of novel chemistries and gene therapies matured through successive viral vectors with

sequence modifications to maximize both safety and gene expression[45, 49]. These works

suggested that the ability of advancing biomedical technologies to generate products that met

the market expectations for efficacy, safety, and quality, as defined by the FDA, exhibited pat-

terns similar to those of other technology sectors.

We have developed a numerical model for the growth of biomedical technologies called the

Technology Innovation Maturation Evaluation (TIMEtm) model, which examines the relation-

ship between the growth of technology in selected research areas, and successful development

of biopharmaceutical products based on those technologies[49]. In other technology sectors,

the S-curve of technology growth is commonly modeled using various forms of the generalized

logistic function[50–53]. The TIME model uses the cumulative number of entries in PubMed.

gov for a specific technology as a metric for the accumulation of knowledge and growth of that

technology. We have investigated the fit between the accumulated number of entries related to

a specific technology and a number of logistic functions. We concluded that an exponentiated

logistic function provided the most consistent fit to the cumulative number of publications

and concordance between the numerically defined initiation point and seminal advances in

the field noted in historical reviews. The TIME model is based on the use of the best-fit, expo-

nentiated logistic function (see Materials and Methods), from which it is possible to calculate

the point of maximum acceleration of publication accumulation, defined as the point of initia-
tion for that technology, and the point of maximum deceleration of publication accumulation,

defined as the established point for that technology (Fig 1).

The TIME model has also been used to examine patterns of innovation underlying all of

the New Molecular Entities (NMEs) approved by the FDA 2010–2014. This study showed

that 63/87 (72%) of NMEs discovered by targeted strategies were approved only after the estab-
lished point of research on the drug’s target and that the median time from initiation to first

approval was 36 years. This study also showed that the time in clinical development was signif-

icantly longer for NMEs that entered clinical development before technologies were established
than for NMEs that entered clinical development after this point (11.3 years versus 8.4 years,

p<0.001). In contrast, there was no association between the approval of NMEs discovered

using phenotypic screening methods and metrics describing the growth of research on the

drug target. This result is consistent with the expectation that discovery and development of

phenotypic products are not dependent on advanced knowledge of a specific target or pathway

[2, 54].

The present study examines patterns of innovation for the advent of new anticancer drugs,

focusing explicitly on the lag in the emergence of new drugs in response to increases in cancer

research funding in the 1970s. Our hypothesis is that the emergence of new anticancer drugs

follows a characteristic pattern of innovation in which successful products emerge only after

research on the enabling technologies achieves a certain level of maturation, and that the lag in

new drug approvals corresponds to the time required for the scientific advances of the 1970s

to reach this established point.

To test this hypothesis, we used the TIME model to examine the growth of technologies

related to major classes of cancer drugs, and examined the relationship between the growth of

these technologies and approval of drugs for treating cancer in each of these classes. This anal-

ysis quantifies the time lag between initiation of new areas of research to approval of drugs

Modeling timelines for translational science in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0174538 March 27, 2017 4 / 19

http://PubMed.gov
http://PubMed.gov
https://doi.org/10.1371/journal.pone.0174538


associated with this research, as well as the temporal relationship between maturation of this

research and drug approvals.

Materials and methods

Data sources

Approved anticancer drugs and dates of first approval were identified from the National

Cancer Institute (NCI) (http://www.cancer.gov/cancertopics/druginfo/alphalist), Tufts

Center for Study of Drug Development[55], and drugs@FDA (http://www.accessdata.fda.

gov/scripts/cder/drugsatfda/index.cfm). This analysis excluded cancer vaccines, anti-emet-

ics, bone marrow stimulating agents, and cardioprotective agents. Drugs were classified as

Fig 1. Quantitative model of the technology growth cycle S-curve. Growth of research in a specific area is modeled

by a best-fit logistic equation (black line) fit to the log of the number of publications identified by a PubMed search. New

areas of research emerge into a nascent stage and mature through a near-exponential growing stage before becoming

established as limits are encountered. The rate of acceleration of the best fit model (red line) (i.e., d2y/dx2) is used to

identify the initiation (Ti), representing the point of maximum exponential acceleration, and when the technology is

established (Te), representing the point of maximum exponential deceleration of cumulative publications.

https://doi.org/10.1371/journal.pone.0174538.g001
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“biologic,” “phenotypic,” or “targeted” as described[2, 56]. The complete list of drugs is pro-

vided in S1 Fig.

NCI appropriations were identified at www.nih.gov/about/almanac/appropriations/index.

htm. Appropriations were corrected for the Consumer Price Index at www.usinflationcalculator.

com/inflation/consumer-price-index-and-annual-percent-changes-from-1913-to-2008/ and do

not include $1.26B in supplemental funding from the American Recovery and Reinvestment

Act.

Analytical model

Bibliometric methods are commonly used to characterize the emergence of new technologies

[45, 49, 57–61]. The use of bibliometrics in technology forecasting has been particularly com-

mon in the pharmaceutical industry because of its proximity to basic scientific results[62].

The TIME model quantifies the accumulation of knowledge by considering each publication

about a specific technology as a quantum of new knowledge. The information value of any

single publication may vary in magnitude ranging from large advances that contribute posi-

tively to knowledge, to incremental, inconsequential, or even incorrect (negative) contribu-

tions. However, when integrated over very large numbers of publications, the cumulative

number of publications provides a quantifiable metric for the accumulation of knowledge

[45, 63].

Publications were identified in PubMed.gov using search terms shown in S1 Table. Searches

used MeSH terms when possible, and were restricted to publications associated with cancer

using the Boolean function: AND “neoplasms”[MeSH Terms].

Many potential sources of measurement error exist in bibliometric analysis including, but

not limited to, the efficiency of ascertaining relevant publications through a text-based search,

changes in the lexicon of fields over time, the ascertainment of irrelevant publications contain-

ing coincident text strings, and errors arising from the process of adding metatags and archiv-

ing publications in the PubMed.gov database. The use of MeSH terms for search was designed

to take advantage of the quality controls built into MeSH assignments and the non-ascertain-

ment of publications due to changes in lexicon[64].

The S-curve of the technology growth cycle is modeled using the logistic equation:

Y� ¼ L=ð1þ e ð̂� ðmx þ bÞÞ

where Y� is the log of the cumulative number of papers, x is years, and L the limit of Y�. L rep-

resents the log of the predicted maximum number of papers if progress continues along a

typical S-curve. Parameters were determined using a Fisher-Pry transformation of the biblio-

metric data[65]. The second derivative of the best-fit logistic equation is used to identify the

initiation point, representing the point of maximum exponential acceleration of cumulative

publications (max d2y/dx2), and the established point, representing the point of maximum

exponential deceleration of cumulative publications (min d2y/dx2). Errors for parameters (Ti,

Te) were estimated based on the residuals of the best fit curve.

Validation studies have shown that the initiation point corresponds with seminal scientific

or technological advances that initiate new areas of research and exponential growth in publi-

cation activity (see Results). The initiation point thus corresponds to the beginning of the T0

or discovery research phase of translational science[29, 66, 67]. The interval between the initia-
tion point and NME approval represents the time between a scientific discovery or invention,

and launch of a drug based on these advances, corresponding to the T0 + T1 + T2 phases of

translational science[29, 66–68].
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Results

Defining the lag in emergence of drugs for cancer therapy

There were >2.7 million publications identified by “neoplasms”[MeSH] between 1950 and

2012, an interval in which there was >$170 billion in NCI appropriation (constant dollars)

(http://www.nih.gov/about/almanac/appropriations/index.htm.)) (Fig 2A). A dramatic

increase in funding for the NCI is apparent in the early 1970s following the signing of the

National Cancer Act of 1971. Additionally, there is a steep increase in NCI funding in conjunc-

tion with a general increase in government funding for biomedical research in the late 1990s.

A 1999 report prepared for the Institute of Medicine estimated that NCI funding represented

approximately half of total funding for cancer research provided by government, industry, and

various foundations[69]. There is a high correlation between funding and annual publications

from 1950 and the present (0.92, p<0.0001).

A total of 138 NMEs, including both small molecules and biologics, were approved from

1999–2013 (Fig 2B). Of the 138 NMEs, 65 were small molecules discovered through pheno-

typic screening, 47 were small molecules discovered through targeted methods, and 26 were

biologics. There was little change in the number of NME approvals from 1950 to the late

1980s. This pattern changed with the emergence of increasing numbers of targeted and bio-

logic therapeutics in the late 1980s and 1990s. Fig 2C shows the annual number of drug

approvals as a function of cumulative publications on cancer. From 1950–1985, there was no

significant correlation between the number of new drug approvals and the>700,000 publica-

tions identified by “neoplasms”[MeSH] (1950–1985 R2 = 0.06, NS). Since the late 1980s, there

has been a significant correlation between the increasing NME approvals, dominated by tar-

geted and biological products, and cumulative number of publications (1986–2012 R2 = 0.59,

p<0.01). The 16-year interval between increases in funding for cancer research and increases

in the number of NME approvals for cancer therapy is consistent with earlier observations of

the lag between research funding and new drug approvals by the Congressional Budget Office,

RAND, or others[42, 44].

Growth cycles of technologies associated with discovery and

development of cancer drugs

Sixteen technologies associated with the discovery or development of new anticancer drugs

were selected based on: (i) the classification of anticancer drugs by Martell et al., including: anti-

metabolites (including antifolates), alkylating agents, alkaloids (including anti-microtubules),

anthracyclines, estrogen/progesterone (hormonal), topoisomerases, cancer immunology, onco-

genes, protein kinases, epigenetics, and apoptosis[70]; (ii) selected enabling technologies includ-

ing recombinant proteins, monoclonal antibodies, genomics, systems biology, and synthetic

biology; (iii) and the ability to discretely identify relevant publications in sufficient numbers for

statistical analysis[70]. Each of these technologies represents broad areas of investigation in

basic and applied science, drug development, and oncology, as opposed to investigations related

to any specific target or candidate product.

Of the sixteen technologies, thirteen exhibited a characteristic growth pattern in which the

log of the cumulative number of publications exhibited a logistic pattern of growth and could

be modeled with the TIME model (S1 Fig). Research areas that cannot be modeled with the

TIME model include nascent technologies currently experiencing an exponential growth

phase that have not yet approached a limit, technologies that exhibit complex growth patterns

indicative of a series of sequential S-curves, and some technologies that exhibit inexplicable

patterns. The three technologies that could not be modeled in this study reflect contemporary
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areas of research (epigenetics, systems biology, and synthetic biology), which exhibited a pat-

tern of exponential growth consistent with technologies that have not yet approached an estab-
lished point. We would note that a current limitation of the TIME model is that the numerical

methods that are used do not enable prediction of when exponential growth may slow, and

whether these technologies will ultimately exhibit a characteristic S-curve pattern of growth.

For technologies that could be quantified with the TIME model, the initiation point was cal-

culated as the point of maximum exponential acceleration, and the established point was

Fig 2. (A) Annual appropriations for the National Cancer Institute (NCI) and publications related to cancer, 1950–2012. NCI appropriations are shown in

constant 2012 dollars and exclude supplemental funding from the American Recovery and Reinvestment Act in 2009–2010. Publications on cancer were

identified in PubMed.gov using the search term “neoplasms”[MeSH]. (B) Annual approvals of anticancer drugs. Approved drugs are classified as biologic,

phenotypic, or targeted based on the composition of matter or method of drug discovery as described[56]. (C) The relationship between publications on

cancer (log scale) and annual approvals. Trend lines are shown for 1960–1985 (not significant) and 1985 to the present (p<0.005). Data points 1970 and

1986 are indicated for reference only.

https://doi.org/10.1371/journal.pone.0174538.g002
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calculated as the point of maximum exponential deceleration. To validate the relevance of the

numerically defined initiation point, we compared this date with key milestones identified in

review articles for each technology. For certain technologies, the initiation point corresponded

to the date of specific technological advances within that technology field. For example, the

initiation point for monoclonal antibodies corresponded with the work of Cotton, Kohler,

Milstein, Jerne, and others circa 1973–1975 on myelomas and hybridomas that enabled pro-

duction of monoclonal antibodies, and the initiation point for recombinant proteins corre-

sponded with the work of Cohen, Boyer, Berg, Nathans, Smith, and others circa 1970–1973

that enabled production of recombinant proteins. For other technologies, the initiation point

corresponds with scientific insights, rather than discrete inventions. For example, the initiation
point for oncogenes and tyrosine kinases corresponded with the convergence of research on

protein kinases and research on oncogenic retroviruses, which led to recognition of oncogenes

and tyrosine kinases. Similarly, the initiation point for apoptosis corresponded with studies on

programmed cell death in embryogenesis, which led to an understanding of the role of apopto-

sis in cancer in the 1980s. For other technologies, the initiation point corresponded to studies

on natural products that uncovered novel pathways. For example, the initiation point for

research on microtubules in cancer corresponded with early studies on the mechanism of

action of vinca alkaloids, the initiation point for research on topoisomerase corresponded with

early research on the mechanism of action of epipodophyllotoxins, and the initiation point for

research on histone deacetylases and epigenetics corresponded with research on the mecha-

nism of action of trichostatin.

Timelines from initiation of research to new drug approvals

Of 16 selected technologies, 12 were associated with at least one approved drug, and 118/138

approved anticancer drugs were associated with at least one of the selected technologies. Drugs

not directly associated with one of the selected technologies were prednisone, thalidomide-

related compounds (3 drugs), antibiotics (2 drugs), asparaginase (2 drugs), platinums (3 drugs),

proteasome inhibitor (1 drug), adjuvants (2 drugs), protein synthesis inhibitors (2 drugs),

hedgehog pathway inhibitors (1 drug), and miscellaneous (3 drugs).

Fig 3 shows the temporal relationship between the exponential growing phase of the curve,

from initiation (Ti) to established (Te), and approval of associated drugs. Sixty-eight percent

(44/65) of phenotypic drugs (open circles) were approved prior to the established point of tech-

nology growth. These phenotypic drugs include many antimetabolites, alkylating agents, and

anthracyclines as well as phenotypically-discovered natural products that inhibit topoisomer-

ase and histone deacetylase. In contrast, only 14 percent (10/73) of biologic or targeted prod-

ucts were approved before the associated technologies passed the established point, while 86%

(63/73) were approved in the years after the established point. There was a significant differ-

ence between the timelines for development of phenotypic NMEs versus targeted or biologic

NMEs as measured by the interval between initiation point and FDA approval (44 years versus

34 years, p<0.001) (Fig 4A), or the interval between the technology being established and

approval (13 years versus -2 years, p<0.001) (Fig 4B). This result is consistent with the fact

that discovery and development of targeted and biologic products are explicitly predicated on

accumulated knowledge of the drug target or biologic product, while phenotypic development

often proceeds without complete knowledge of the drug target or mechanism of action.

Discussion

The expansion of funding for cancer research since the 1970s correlates not only with near-

exponential growth in the number of publications, but also to a series of salient scientific
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discoveries that promised to provide new targeted and biologic therapies for treating cancer

[5]. Nevertheless, for several decades after these increases in funding, there was no propor-

tional increase in approval of NMEs. In this report, we examine the lag in emergence of NMEs

for cancer therapy since the 1970s, building on theories of innovation that posit a relationship

between technological maturation and the ability of technologies to generate successful prod-

ucts, as well as observations in many technology sectors that successful products emerge only

after research on the enabling technologies achieves a certain level of maturation[31–33]. The

data presented are consistent with the stated hypothesis that the emergence of new anticancer

drugs follows a characteristic pattern of innovation in which successful products emerge only

after research on the enabling technologies achieves a certain level of maturation, and that the

Fig 3. The relationship between drug approval dates and growth of associated technologies. Timelines for the growth of technologies are shown as

blue bars from the initiation point (Ti), through the exponential growing stage, to the point at which the technology is established (Te). The number of

approvals associated with each technology is shown for phenotypic drugs (open, orange circles) and targeted or biologic products (closed, green circles).

Approval dates for drugs associated with multiple technologies are shown more than once.

https://doi.org/10.1371/journal.pone.0174538.g003
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lag in the emergence of NMEs represents a predictable latency associated with the time

required for nascent science and technology to reach this level of maturation. There are several

aspects to this observation.

First, using an analytical model for technology growth, we show that the emergence of

targeted and biologic NMEs often follows normative patterns of innovation. For most of the

technologies examined, technology growth, as measured by accumulation of publications,

Fig 4. Timelines of drug approval and growth of associated technologies. (A) Years from initiation of associated technology (Ti) and approval of

phenotypic drugs (orange bars) and biologic and targeted products (green bars). (B) Years from technologies becoming established (Te) and approval of

phenotypic drugs (orange bars) and biologic and targeted products (green bars). Each drug is shown only once in association with the Ti and Te of the

lagging technology.

https://doi.org/10.1371/journal.pone.0174538.g004
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exhibited a characteristic S-curve growth pattern, with the technology initiation point intro-

ducing a stage of exponential growth that persisted until the technology reached an established
point. Moreover, it was only after this established point that these technologies began to effi-

ciently generate new targeted and biologic NMEs. Those technologies that did not exhibit an

S-curve in this analysis exhibited an exponential growth pattern characteristic of nascent tech-

nologies, and none have generated approved NMEs. The characteristic patterns of technology

growth and NME approvals observed in this study are similar to those we have observed in

other studies including studies of drugs for Alzheimer’s disease and gene therapies[45, 49, 63],

of which 80–90% of which exhibit the exponentiated logistic growth pattern that can be mod-

eled with the TIME model.

While the accumulation of publications readily fits an exponentiated growth model, there is

no reason to believe that the progress of research is best characterized by this monotonic pic-

ture. This analysis does not distinguish publications describing the discipline-specific contri-

butions to technology growth arising from basic molecular, pathological pharmaceutical,

preclinical, or clinical studies. Nor does this analysis distinguish the multiplicity of incremental

or radical innovations that may be necessary to bring a complex pharmaceutical product to

market, many of which occur independently or in parallel. Future studies should be directed at

examining the contributions of individual components in the process of translational science,

and how they contribute to the characteristic S-curve of publications associated with a discrete

technology.

Second, for all of our accumulated studies, we have found that the large majority of targeted

and biologic NMEs are approved only after the associated technologies pass the established
point. These observations are consistent with the stated hypothesis that “the emergence of new

anticancer drugs follows a characteristic pattern of innovation in which successful products

emerge only after research on the enabling technologies achieves a certain level of maturity.”

These observations are also consistent with the stated strategy of targeted and biological

drug discovery, which is explicitly predicated on accumulated observations from biomedical

research regarding the molecular mechanisms of disease, target identification and validation,

and identification of drugs that impact these targets[56, 71]. In essence, science-based innova-

tions are not occurring until the science base is mature.

In this context, the fact that no such association was observed between technology growth

and approval of phenotypic NMEs is also significant. This observation is consistent with strate-

gies for phenotypic drug discovery, which are explicitly predicated on observed biological

effects, not an a priori understanding of disease mechanisms[56, 71]. We would also note

that this analysis does not address the myriad innovations in medicine that may occur in the

absence of scientific or technological advances through improvement in practice or those

related to new medical devices, diagnostics, or accumulated know-how[72].

These observations do not establish causality between the accumulation of knowledge and

successful development of targeted and biologic NMEs. Specifically, these observations do not

rule out reverse causality. For example, it is possible that the slowing of publication growth,

which defines the calculated established point in the TIME model, is a consequence of the

progress being made towards approval of targeted and biological NMEs. Such a scenario

would posit that the progress of lead products towards approval impacts, and reduces, the rate

of accumulation of publications in the academic literature, or that there could be a feedback

loop between these two processes. The fact that approval of phenotypic NMEs is not associated

with the established point argues against progress towards approval, itself, being sufficient to

cause of slowing in publication growth.

Other factors, not addressed in this study, could contribute to both the slowing of publica-

tion growth and progress towards approval of targeted and biological products. For example,
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Brown[73] has suggested that the methods used for targeted discovery may, themselves, be

maturing along an S-curve analogous to that described by Christensen[31–33]. Cockburn and

Henderson have suggested that pharmaceutical companies have an inherent “absorptive

capacity” of the pharmaceutical companies, which can impact the relationship between scien-

tific advances and NME approvals[40]. Toole has suggested that the level of R&D spending

can also impact this relationship[41].

While widely used to assess the progress of scientific research, the accumulation of publica-

tions is a rather crude metric of scientific advance. As noted above, the cumulative number of

publications subsumes research describing a number of critical milestones on the path to drug

development. Eder et al. have highlighted publications related to target discovery and valida-

tion, demonstration of disease association, emergence of a therapeutic concept and mecha-

nism of action, as well as lead and final molecule generation as milestones in the development

of first in class products[74]. The publication record will also include research related to the

metrics included in Lipinski’s “rule of 5,”[75] considered the gold standard for successful,

small molecule drugs, as well as the knowledge base represented by Astra-Zeneca’s “5 R’s”[76]

or analogous rubrics used in other organizations as predictors of drug development success.

Further work will be required to differentiate the role of broad measures of technology growth,

such as the TIME metrics and the role of individual milestones within this corpus.

Third, the present observations are also consistent with the hypothesis that the lag in new

drug approvals corresponds to the time required for the scientific advances of the 1970s to

reach this established point. If true, the lag in emergence of new drugs for cancer therapy is fol-

lowing a pattern also observed in many other technology sectors[30, 31, 38], which is associ-

ated with a number of strategies and tools for strategic management of technology including

technology roadmapping, technological forecasting, and technology readiness assessments.

These observations do not rule out other mechanisms that could contribute to this lag exerting

their influence independently, or in consort, with the growth of technologies. For example, it

has been suggested that methods for targeted drug discovery, which first emerged in the 1970s

and 1980s, may, themselves, be maturing along an S-curve, and are only now reaching a level

of maturation sufficient to compete with phenotypically discovered drugs[73]. Similarly, the

structure of the scientific enterprise[8], the amount [41] and focus of research funding[9], con-

nections among researchers[10, 11] and clinicians[5], the quality preclinical research[12], the

involvement of industry[5, 14], the “absorptive capacity” of industry[39], and the nature of the

available market[40] may all have either independent, or interactive, effects on this lag.

Further studies are needed to address the differential effects of such dynamics, and their

interactions, on the lag in emergence of new drugs for cancer therapy. We have previously

observed, for example, that capital investments in gene therapy were asynchronous with the

growth of these technologies, as measured with the TIME model[49]. That study tracked >$5

billion in capital investments in gene therapy companies prior to 2012, and correlated the

number and magnitude of investments with the growth of the gene therapy technology. We

observed that the large majority of capital investments in gene therapy were made in technolo-

gies that had not reached the midpoint of the technology growth curve, and none of invest-

ments led to products[49]. We proposed that this “Asynchrony between the maturation of

gene therapy technologies and capital investment in development-focused business models

may have stalled the commercialization of gene therapy.”[49]

Similarly, a study of IPOs during the 2000 window showed an inverse relationship between

capital investments and the maturation of each company’s core technology at IPO. We also

observed that, despite this investment, none of the companies with nascent technologies suc-

cessfully developed products based on these technologies, while companies with more mature

technologies were able to develop a number of successful products[77]. These observations
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also pointed to the need for synchrony between technology maturation, investment, and clini-

cal investigations in drug development[45, 49].

The observations in this report may have implications for translational science strategy.

First, while the exponential acceleration of research output following a salient scientific discov-

ery or invention often generates considerable excitement and, sometimes, unintended hype,

this analysis suggests that such advances are less likely to generate products in the near term

than to initiate the growth cycle of a new research area. In this context, the next wave of NMEs

for cancer therapy may be more likely to come from technologies that are now reaching the

established point, such as genomics, immunotherapy, or even gene therapy, than from technol-

ogies that are now in the nascent or growing phases of their growth cycles such as systems biol-

ogy or synthetic biology.

Second, this analysis suggests that the timelines of translational science might be signifi-

cantly shortened through initiatives that accelerate the growth of science and technology as

well as the timelines of clinical investigation and regulatory review. Reichert and Wenger have

reported that for anticancer drugs approved between 1990 and 2006, the average length of clin-

ical trials was 74.4 months (6.2 years), and the combined clinical and regulatory phases aver-

aged 84.2 months (7 years)[55]. For the same set of products, our data shows that the average

time from initiation of the associated technology to drug approval was 41 years, and the aver-

age time between the technology reaching the established point and approval was 9 years.

Thus, fractional reductions in the length of time required for maturation of technology could

have a greater effect on accelerating drug approval than proportional reductions in the time-

lines for clinical trials or regulatory review. In fact, several initiatives are already directed at

advancing the early stages of the translational process including a commitment to increase

research funding in the recently-passed 21st Century Cures Act[78], efforts to improve collabo-

ration, communication, and data sharing[10, 11], the Accelerating Medicines Partnership[79],

and efforts to advance preclinical science by the National Center for Advancing Translational

Sciences[13].

Finally, the timelines of translational science for targeted and biological products estimated

using the TIME model (including an average of 44 years from research initiation to approval

and 14 years from research being established to approval) suggest the need for a long-term

perspective on the societal impact of funding for basic cancer research. This analysis suggests

that the impact of funding for cancer research should not be measured by near-term metrics

of new drug approvals or clinical outcomes, nor should it be measured by the outcomes of

clinical trials undertaken with nascent technologies. Rather, the impact of basic and applied

research funding might be more appropriately measured by the advance of technologies

through predictable growth cycles. Additionally, if these data do, in fact, reflect an essential

characteristic of the relationship between the growth of research and timelines for the emer-

gence of new drugs, these observations suggest that reductions in research funding and

research activity might have deleterious impacts on timelines for new drug development and

clinical outcomes that are not recognized for decades.

Finally, this analysis emphasizes the importance of examining patterns of innovation in

translational science and developing analytical tools to guide strategic policy interventions

aimed at accelerating this process. Recognizing recurrent patterns of innovation, and devel-

oping analytical tools for modelling these patterns, can have a positive impact on project man-

agement and policy formulation. Tools for technology road mapping[80],technological

forecasting[36, 37], Technology Readiness Assessment, and Technology Maturation Planning

[27] are routinely used for strategic management of technology by many industries. Such

methods can play an important role in avoiding decisions based on the unrealistic expectations

and “hype” surrounding many nascent scientific advances, battlefield views of impediments to
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progress, or the narrowly focused perspectives and objectives of multifarious stakeholders. The

development and application of such tools in pharmaceutical development could be an aid to

efficient allocation of R&D resources, prioritization of research projects, and the design of clin-

ical trials with clinical endpoints and objectives that are appropriate for the stage of technology

maturation. Such data-driven strategies might improve the efficiency of translational science,

reduce the timelines and costs of product development, and more accurately inform the expec-

tations for the future.

Supporting information

S1 Fig. TIME modeling of technology growth cycles for selected technologies. The log of

the cumulative number of publications in PUBMED for each research area is shown as sym-

bols. The best fit logistic regression is shown as a solid line in a corresponding color. Three

technologies could not be modeled as a logistic regression and are shown as dotted lines con-

necting annual data. These technologies appear to be in the early, exponential phase of their

growth cycle.

Publications were identified in the PUBMED database of the National Center for Biotechnol-

ogy Information (NCBI) using the search terms shown in S1 Table. The S-curve of the technol-

ogy growth cycle is modeled using the logistic equation: Y� = L/(1+e^(-(mx+b))) where Y� is

the log of the cumulative number of papers (y�), x is years, and L the limit of Y�. L represents

the log of the predicted maximum number of papers if progress continues along a typical S-

curve. The second derivative of the best-fit logistic equation is used to identify the initiation

point (Ti), representing the point of maximum exponential acceleration of cumulative publica-

tions (maximum d2y/dx2), and the point at which the technology becomes established (Te),

representing the point of maximum exponential deceleration of cumulative publications (min-

imum d2y/dx2).

(TIF)

S1 Table. Search terms and TIME metrics for associated technologies.

(XLS)

Acknowledgments

This work was supported by a grant from the National Biomedical Research Foundation. The

authors thank Dr. Kenneth Kaitin for providing data on drug approvals from the Tufts Center

for Study of Drug Development as well as Aaron Perlman and Drs. Andrea Ballabeni, Michael

Boss, Nancy Hsiung, David Nathan, and anonymous reviewers for their constructive contribu-

tions to this research. Portions of this work were described in testimony to the House Energy

and Commerce Committee “Roundtable on 21st Century Cures” and at hearings on the “21st

Century Cures” (May 6, 2014). An expanded transcript of this testimony was published in the

Federal Register.

Author Contributions

Conceptualization: LM FL.

Data curation: LM FL.

Formal analysis: FL.

Investigation: LM FL.

Methodology: LM FL.

Modeling timelines for translational science in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0174538 March 27, 2017 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174538.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174538.s002
https://doi.org/10.1371/journal.pone.0174538


Validation: FL.

Visualization: LM FL.

Writing – original draft: FL.

Writing – review & editing: LM FL.

References
1. Haber DA, Gray NS, Baselga J. The evolving war on cancer. Cell. 2011; 145(1):19–24. https://doi.org/

10.1016/j.cell.2011.03.026 PMID: 21458664

2. Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science.

2000; 287(5460):1969–73. PMID: 10720316

3. Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nature Reviews Cancer. 2005; 5

(1):65–72. https://doi.org/10.1038/nrc1529 PMID: 15630416

4. Bailar JC, Gornik HL. Cancer undefeated. New England Journal of Medicine. 1997; 336(22):1569–74.

https://doi.org/10.1056/NEJM199705293362206 PMID: 9164814

5. Varmus H. The new era in cancer research. Science. 2006; 312(5777):1162–5. https://doi.org/10.1126/

science.1126758 PMID: 16728627

6. Nathan DG. The cancer treatment revolution. Transactions of the American Clinical and Climatological

Association. 2007; 118:317. PMID: 18528513

7. Vogelstein B, Kinzler KW. Winning the war: science parkour. Sci Transl Med. 2012; 4:127.

8. Alberts B, Kirschner MW, Tilghman S, Varmus H. Rescuing US biomedical research from its systemic

flaws. Proceedings of the National Academy of Sciences. 2014; 111(16):5773–7.

9. Gillum LA, Gouveia C, Dorsey ER, Pletcher M, Mathers CD, McCulloch CE, et al. NIH disease funding

levels and burden of disease. PLoS One. 2011; 6(2):e16837. https://doi.org/10.1371/journal.pone.

0016837 PMID: 21383981

10. Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, et al. Toward interoperable

bioscience data. Nature genetics. 2012; 44(2):121–6. https://doi.org/10.1038/ng.1054 PMID: 22281772

11. Varmus H, Harlow E. Science funding: provocative questions in cancer research. Nature. 2012; 481

(7382):436–7. https://doi.org/10.1038/481436a PMID: 22281578

12. Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature. 2012;

483(7391):531–3. https://doi.org/10.1038/483531a PMID: 22460880

13. Collins FS. Reengineering translational science: the time is right. Science translational medicine. 2011;

3(90):90cm17–90cm17. https://doi.org/10.1126/scitranslmed.3002747 PMID: 21734173

14. Hutton J. Transforming Translation–Harnessing Discovery for Patient and Public Benefit. Report of the

Translational Research Working Group of the National Cancer Advisory Board. 2007.

15. Faguet GB. The war on cancer: Springer; 2005.

16. Kamb A, Wee S, Lengauer C. Why is cancer drug discovery so difficult? Nature Reviews Drug Discov-

ery. 2007; 6(2):115–20. https://doi.org/10.1038/nrd2155 PMID: 17159925

17. Sorger PK, Allerheiligen SR, Abernethy DR, Altman RB, Brouwer KL, Califano A, et al., editors. Quanti-

tative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and

understanding therapeutic mechanisms. An NIH white paper by the QSP workshop group; 2011: NIH

Bethesda.

18. Balconi M, Brusoni S, Orsenigo L. In defence of the linear model: An essay. Research Policy. 2010; 39

(1):1–13.

19. Godin B. The Linear model of innovation the historical construction of an analytical framework. Science,

Technology & Human Values. 2006; 31(6):639–67.

20. Edgerton D. The Linear Model.

21. Stokes DE. Pasteur’s quadrant: Basic science and technological innovation: Brookings Institution

Press; 2011.

22. Narayanamurti V. Cycles of Invention and Discovery: Harvard University Press; 2016.

23. Bush V. The Endless Frontier, Report to the President on a Program for Postwar Scientific Research.

DTIC Document, 1945.

24. Sampat BN, Mowery DC, editors. Universities in national innovation systems2004: Georgia Institute of

Technology.

Modeling timelines for translational science in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0174538 March 27, 2017 16 / 19

https://doi.org/10.1016/j.cell.2011.03.026
https://doi.org/10.1016/j.cell.2011.03.026
http://www.ncbi.nlm.nih.gov/pubmed/21458664
http://www.ncbi.nlm.nih.gov/pubmed/10720316
https://doi.org/10.1038/nrc1529
http://www.ncbi.nlm.nih.gov/pubmed/15630416
https://doi.org/10.1056/NEJM199705293362206
http://www.ncbi.nlm.nih.gov/pubmed/9164814
https://doi.org/10.1126/science.1126758
https://doi.org/10.1126/science.1126758
http://www.ncbi.nlm.nih.gov/pubmed/16728627
http://www.ncbi.nlm.nih.gov/pubmed/18528513
https://doi.org/10.1371/journal.pone.0016837
https://doi.org/10.1371/journal.pone.0016837
http://www.ncbi.nlm.nih.gov/pubmed/21383981
https://doi.org/10.1038/ng.1054
http://www.ncbi.nlm.nih.gov/pubmed/22281772
https://doi.org/10.1038/481436a
http://www.ncbi.nlm.nih.gov/pubmed/22281578
https://doi.org/10.1038/483531a
http://www.ncbi.nlm.nih.gov/pubmed/22460880
https://doi.org/10.1126/scitranslmed.3002747
http://www.ncbi.nlm.nih.gov/pubmed/21734173
https://doi.org/10.1038/nrd2155
http://www.ncbi.nlm.nih.gov/pubmed/17159925
https://doi.org/10.1371/journal.pone.0174538


25. Mankins JC. Technology readiness assessments: A retrospective. Acta Astronautica. 2009; 65

(9):1216–23.

26. Mankins JC. Technology readiness levels. White Paper, April. 1995;6.

27. Office USGA. Technology Readiness Assessment Guide. August 2016.

28. Gannon F. The steps from translatable to translational research. EMBO reports. 2014; 15(11):1107–8.

https://doi.org/10.15252/embr.201439587 PMID: 25296643

29. Woolf SH. The meaning of translational research and why it matters. Jama. 2008; 299(2):211–3. https://

doi.org/10.1001/jama.2007.26 PMID: 18182604

30. Foster RN. Innovation: The attacker’s advantage: Summit Books; 1988.

31. Christensen CM. The innovator’s dilemma: the revolutionary book that will change the way you do busi-

ness: HarperBusiness Essentials New York, NY; 2003.

32. Christensen CM. Exploring the limits of the technology S-curve. Part I: component technologies. Pro-

duction and Operations Management. 1992; 1(4):334–57.

33. Christensen CM. Exploring the limits of the technology S-curve. Part II: Architectural technologies. Pro-

duction and Operations Management. 1992; 1(4):358–66.

34. Foster RN. Innovation: The attacker’s advantage: Summit Books New York; 1986.

35. Christensen C. The innovator’s dilemma: when new technologies cause great firms to fail: Harvard

Business Review Press; 2013.

36. Louie G. Persistent forecasting of disruptive technologies. Washington, DC: The National Academies

Press; 2009.

37. Martino JP. A review of selected recent advances in technological forecasting. Technological Forecast-

ing and Social Change. 2003; 70(8):719–33.

38. Christensen CM, Rosenbloom RS. Explaining the attacker’s advantage: Technological paradigms,

organizational dynamics, and the value network. Research Policy. 1995; 24(2):233–57.

39. Petrick IJ, Echols AE. Technology roadmapping in review: A tool for making sustainable new product

development decisions. Technological Forecasting and Social Change. 2004; 71(1):81–100.

40. Cockburn IM, Henderson RM. Absorptive capacity, coauthoring behavior, and the organization of

research in drug discovery. The Journal of Industrial Economics. 1998; 46(2):157–82.

41. Toole AA. The impact of public basic research on industrial innovation: Evidence from the pharmaceuti-

cal industry. Research Policy. 2012; 41(1):1–12.

42. Austin DH, editor Research and development in the pharmaceutical industry2006: Congress of the

United States, Congressional Budget Office.

43. Lichtenberg FR. The impact of biomedical knowledge accumulation on mortality: a bibliometric analysis

of cancer data. National Bureau of Economic Research, 2013.

44. Morris ZS, Wooding S, Grant J. The answer is 17 years, what is the question: understanding time lags

in translational research. Journal of the Royal Society of Medicine. 2011; 104(12):510–20. https://doi.

org/10.1258/jrsm.2011.110180 PMID: 22179294

45. McNamee LM, Ledley FD. Patterns of technological innovation in biotech. Nat Biotechnol. 2012; 30

(10):937–43. Epub 2012/10/12. https://doi.org/10.1038/nbt.2389 PMID: 23051809

46. Pisano GP. Science business: The promise, the reality, and the future of biotech: Harvard Business

Press; 2006.

47. Jantsch E. Technological forecasting in perspective: OCDE; 1967.

48. Daim TU, Rueda G, Martin H, Gerdsri P. Forecasting emerging technologies: Use of bibliometrics and

patent analysis. Technological Forecasting and Social Change. 2006; 73(8):981–1012.

49. Ledley F, McNamee L, Uzdil V, Morgan I. Why commercialization of gene therapy stalled; examining

the life cycles of gene therapy technologies. Gene therapy. 2013.

50. Young P. Technological growth curves: a competition of forecasting models. Technological forecasting

and social change. 1993; 44(4):375–89.

51. Meade N, Islam T. Technological forecasting—Model selection, model stability, and combining models.

Management Science. 1998; 44(8):1115–30.

52. Nagy B, Farmer JD, Bui QM, Trancik JE. Statistical basis for predicting technological progress. PloS

one. 2013; 8(2):e52669. https://doi.org/10.1371/journal.pone.0052669 PMID: 23468837

53. Meade N, Islam T. Forecasting with growth curves: An empirical comparison. International journal of

forecasting. 1995; 11(2):199–215.

54. Drews J. Drug discovery: a historical perspective. Science. 2000; 287(5460):1960–4. PMID: 10720314

Modeling timelines for translational science in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0174538 March 27, 2017 17 / 19

https://doi.org/10.15252/embr.201439587
http://www.ncbi.nlm.nih.gov/pubmed/25296643
https://doi.org/10.1001/jama.2007.26
https://doi.org/10.1001/jama.2007.26
http://www.ncbi.nlm.nih.gov/pubmed/18182604
https://doi.org/10.1258/jrsm.2011.110180
https://doi.org/10.1258/jrsm.2011.110180
http://www.ncbi.nlm.nih.gov/pubmed/22179294
https://doi.org/10.1038/nbt.2389
http://www.ncbi.nlm.nih.gov/pubmed/23051809
https://doi.org/10.1371/journal.pone.0052669
http://www.ncbi.nlm.nih.gov/pubmed/23468837
http://www.ncbi.nlm.nih.gov/pubmed/10720314
https://doi.org/10.1371/journal.pone.0174538


55. Reichert JM, Wenger JB. Development trends for new cancer therapeutics and vaccines. Drug discov-

ery today. 2008; 13(1):30–7.

56. Swinney DC, Anthony J. How were new medicines discovered? Nature reviews Drug discovery. 2011;

10(7):507–19. https://doi.org/10.1038/nrd3480 PMID: 21701501

57. Agarwal P, Searls DB. Can literature analysis identify innovation drivers in drug discovery? Nat

Rev Drug Discov. 2009; 8(11):865–78. Epub 2009/10/31. https://doi.org/10.1038/nrd2973 PMID:

19876041

58. Garfield E, Melino G. The growth of the cell death field: an analysis from the ISI-Science citation index.

Cell Death Differ. 1997; 4(5):352–61. Epub 1997/07/01. https://doi.org/10.1038/sj.cdd.4400261 PMID:

16465253

59. Marshall A. Trends in biotech literature 2008. Nature Biotechnology. 2009; 27(9):789–.

60. Taroncher-Oldenburg G, Marshall A. Trends in biotech literature 2007. Nat Biotechnol. 2008; 26

(10):1062. Epub 2008/10/11. https://doi.org/10.1038/nbt1008-1062 PMID: 18846063

61. Taroncher-Oldenburg G, Marshall A. Trends in biotech literature 2006. Nat Biotechnol. 2007; 25(9):961.

Epub 2007/09/12. https://doi.org/10.1038/nbt0907-961 PMID: 17846614

62. Firat AK, Woon WL, Madnick S. Technological forecasting–A review. Composite Information Systems

Laboratory (CISL), Massachusetts Institute of Technology. 2008.

63. Beierlein JM, McNamee LM, Walsh MJ, Ledley FD. Patterns of innovation in Alzheimer’s disease drug

development: a strategic assessment based on technological maturity. Clinical Therapeutics. 2015; 37

(8):1643–51. e3. https://doi.org/10.1016/j.clinthera.2015.07.003 PMID: 26243074

64. Kim W, Aronson AR, Wilbur WJ, editors. Automatic MeSH term assignment and quality assessment.

Proceedings of the AMIA Symposium; 2001: American Medical Informatics Association.

65. Fisher JC, Pry RH. A simple substitution model of technological change. Technological forecasting and

social change. 1972; 3:75–88.

66. Schully S, Benedicto C, Gillanders E, Wang S, Khoury M. Translational research in cancer genetics: the

road less traveled. Public Health Genomics. 2009; 14(1):1–8. https://doi.org/10.1159/000272897

PMID: 20051673

67. Khoury MJ, Gwinn M, Ioannidis JP. The emergence of translational epidemiology: from scientific discov-

ery to population health impact. American journal of epidemiology. 2010; 172(5):517–24. https://doi.org/

10.1093/aje/kwq211 PMID: 20688899

68. Khoury MJ, Gwinn M, Yoon PW, Dowling N, Moore CA, Bradley L. The continuum of translation

research in genomic medicine: how can we accelerate the appropriate integration of human genome

discoveries into health care and disease prevention? Genetics in Medicine. 2007; 9(10):665–74.

69. McGeary M, Burstein M. Sources of cancer research funding in the United States. Prepared for the

National Cancer Policy Board, Institute of Medicine. 1999.

70. Martell RE, Sermer D, Getz K, Kaitin KI. Oncology drug development and approval of systemic antican-

cer therapy by the US Food and Drug Administration. The oncologist. 2013; 18(1):104–11. https://doi.

org/10.1634/theoncologist.2012-0235 PMID: 23263289

71. Swinney D. Phenotypic vs. target-based drug discovery for first-in-class medicines. Clinical Pharmacol-

ogy & Therapeutics. 2013; 93(4):299–301.

72. Nelson RR, Buterbaugh K, Perl M, Gelijns A. How medical know-how progresses. Research policy.

2011; 40(10):1339–44.

73. Brown D. Unfinished business: target-based drug discovery. Drug Discovery Today. 2007; 12

(23):1007–12.

74. Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nature

Reviews Drug Discovery. 2014; 13(8):577–87. https://doi.org/10.1038/nrd4336 PMID: 25033734

75. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to esti-

mate solubility and permeability in drug discovery and development settings. Advanced drug delivery

reviews. 2012; 64:4–17.

76. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, et al. Lessons learned from the

fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014; 13

(6):419–31. https://doi.org/10.1038/nrd4309 PMID: 24833294

77. McNamee L, Ledley F. Translational Science by Public Biotechnology Companies in the IPO “Class of

2000”: The Impact of Technological Maturity. PloS one. 2013; 8(12):e82195. https://doi.org/10.1371/

journal.pone.0082195 PMID: 24358154

78. Service CR. Senate Medical Innovation Bills: Overview and Comparison with the 21st Century Cures

Act (H.R. 6). May 17, 2016.

Modeling timelines for translational science in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0174538 March 27, 2017 18 / 19

https://doi.org/10.1038/nrd3480
http://www.ncbi.nlm.nih.gov/pubmed/21701501
https://doi.org/10.1038/nrd2973
http://www.ncbi.nlm.nih.gov/pubmed/19876041
https://doi.org/10.1038/sj.cdd.4400261
http://www.ncbi.nlm.nih.gov/pubmed/16465253
https://doi.org/10.1038/nbt1008-1062
http://www.ncbi.nlm.nih.gov/pubmed/18846063
https://doi.org/10.1038/nbt0907-961
http://www.ncbi.nlm.nih.gov/pubmed/17846614
https://doi.org/10.1016/j.clinthera.2015.07.003
http://www.ncbi.nlm.nih.gov/pubmed/26243074
https://doi.org/10.1159/000272897
http://www.ncbi.nlm.nih.gov/pubmed/20051673
https://doi.org/10.1093/aje/kwq211
https://doi.org/10.1093/aje/kwq211
http://www.ncbi.nlm.nih.gov/pubmed/20688899
https://doi.org/10.1634/theoncologist.2012-0235
https://doi.org/10.1634/theoncologist.2012-0235
http://www.ncbi.nlm.nih.gov/pubmed/23263289
https://doi.org/10.1038/nrd4336
http://www.ncbi.nlm.nih.gov/pubmed/25033734
https://doi.org/10.1038/nrd4309
http://www.ncbi.nlm.nih.gov/pubmed/24833294
https://doi.org/10.1371/journal.pone.0082195
https://doi.org/10.1371/journal.pone.0082195
http://www.ncbi.nlm.nih.gov/pubmed/24358154
https://doi.org/10.1371/journal.pone.0174538


79. Collins F. February 4, 2014. Available from: https://directorsblog.nih.gov/2014/02/04/introducing-amp-

the-accelerating-medicines-partnership/.

80. Phaal R, Farrukh C, Probert D. Technology Roadmapping: linking technology resources to business

objectives. Centre for Technology Management, University of Cambridge. 2001:1–18.

Modeling timelines for translational science in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0174538 March 27, 2017 19 / 19

https://directorsblog.nih.gov/2014/02/04/introducing-amp-the-accelerating-medicines-partnership/
https://directorsblog.nih.gov/2014/02/04/introducing-amp-the-accelerating-medicines-partnership/
https://doi.org/10.1371/journal.pone.0174538

