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Abstract

The growth behaviors of cutaneous neurofibromas in patients with Neurofibromatosis type 1

are highly variable. The role of the germline NF1 mutation, somatic NF1 mutation and muta-

tions at modifying loci, are poorly understood. We performed whole exome sequencing of

three growing and three non-growing neurofibromas from a single individual to assess the

role of acquired somatic mutations in neurofibroma growth behavior. 1–11 mutations were

identified in each sample, including two deleterious NF1 mutations. No trends were present

between the types of somatic mutations identified and growth behavior. Mutations in the

HIPPO signaling pathway appeared to be overrepresented.

Introduction

Neurofibromatosis type 1 (NF1), is an autosomal dominant disorder that affects approximately

one in 3500 people[1]. The underlying cause is a heterozygous mutation in the Neurofibroma-

tosis type 1 gene (NF1). Cutaneous neurofibromas (CN) are one the most frequent manifesta-

tions and a key portion of the diagnostic criteria. NF1 has considerable variability in clinical

presentation among affected individuals, within families, and even within an individual

throughout life[2]. CN can vary from a few to thousands, develop throughout life at different

rates and may or may not continue to grow once they have appeared. The genomic underpin-

nings of CN growth and development are poorly understood.

Analysis of various types of tumors in NF1 patients, including CN, have demonstrated that

independent NF1 somatic mutations likely contribute to tumorigenesis in a “second hit”

model[3]. Second hit mutations in NF1, when identifiable, appear at a distinct locus from the

germline mutation, and from other somatic NF1 mutations in separate tumors within the

same individual, suggesting temporally distinct somatic events[4]. The type of mutation and
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genomic location, of both germline and somatic NF1 mutations, likely effect CN burden and

behavior. Limited genotype-phenotype correlations have been described related to the growth

behaviors of CN in NF1 for both the specific germline NF1 mutation and for acquired somatic

mutations[5]. Numerous investigations have demonstrated that phenotypic expression of NF1

is likely significantly affected by the genotype at other modifying loci outside NF1, although

the role of these mutations remains unclear[6]. For example, phenotypic similarity appears to

decrease with the degree of relationship between individuals[7]. Traditionally it was believed

that all CN harbored a somatic NF1 mutation. However, only about 60% of CNs have an iden-

tifiable NF1 somatic mutation suggesting distinct somatic events outside NF1 may be sufficient

for tumorigenesis[4]. Some studies have suggested a role for microsatellite instability in NF1,

although the specific effects on growth behaviors are unclear[7].

Whether the clinical phenotypic variability of CN growth patterns correlates with the germ-

line NF1 mutation type/location or the acquired somatic mutation type, location or timing,

remains unknown. This is further complicated by the fact that over 1000 different mutations

of the NF1 gene have been identified across the spectrum of substitutions, indels, splice site

alterations and gross chromosomal rearrangements, making the identification of causative

associations difficult.

The fact that multiple CNs occur in a given individual provides an ideal, internally con-

trolled, model for studying the isolated somatic events leading to CN formation and growth

patterns. In order to investigate this relationship, we performed whole exome sequencing

(WES) on six CN from a single patient and paired blood. Three of these tumors had demon-

strated clinically measurable growth in size (growing tumors), while the other three had not

changed in size during the same observation period (non-growing tumors).

Methods

This project was approved by the IRB of UCSF and was given an exempt status an exempt sta-

tus as all information was de-identified. Fresh-frozen tissue from surgically resected CNs and

matched blood were obtained from a thirty-seven year old patient under Institutional Review

Board approved protocols from University of California San Francisco. All tumor samples

were snap-frozen at the time of surgery and stored at -80 until the time of processing. Six

tumors from different body sites were selected for exome sequencing (3 growing, 3 non-grow-

ing) based on stringent quality assessment of normal and tumor DNA. Growing tumors dem-

onstrated clinically apparent growth by serial physical exam and measurement by the senior

author (MK) on 3–6 month serial exams, for greater than one year. Non-growing tumors were

similarly evaluated. Before analysis, the diagnosis of each specimen underwent central patho-

logical review and typical neurofibroma was confirmed. None of the tumors demonstrated

atypical histology or evidence of malignant peripheral nerve sheath tumor. Snap frozen tumor

tissue samples were analyzed by frozen section to assess neoplastic cellularity. Tumors were

macrodissected to enhance tumor tissue, as confirmed by serial frozen sections. DNA was

extracted using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) according the manu-

facturers guidelines. Library preparation and whole exome sequencing was performed at Cen-

trillion Technologies (Palo Alto, CA) using Agilent SureSelect Human All Exon v5 (Santa

Clara, CA) on an Illumina HiSeq 2000 (San Diego, CA).

100bp paired-end reads were aligned against NCBI build 37 (hg19) of the human genome

with BWA-MEM[8]. Duplicate reads were marked, local indel realignment performed, and

base-quality scores recalibrated for each sample with the Picard suite (https://github.com/

broadinstitute/picard) and the Genome Analysis Toolkit (GATK)[9]. Novel point mutations

were identified using MuTect, while indels were identified using GATK Somatic Indel
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Detector, in tumor samples when compared against the normal[10]. Copy number segmenta-

tion was performed on log tumor/normal per-exon coverage ratios using CNVKit and the R

package ’DNAcopy’[11,12]. Visual inspection of mapped reads within the entire NF1 gene,

and all identified mutations, was performed in IGV[13].

Pathway and network analyses were performed with Ingenuity Pathway Analysis (Qiagen,

Redwood City, CA) by loading all high confidence mutations into the analysis platform with

non-modified settings.

Results

The mean depth of coverage across the seven samples was 40X-70X. Interrogation of the germ-

line sample was performed and revealed a missense mutation in NF1, f2741v. Copy number

analysis revealed no changes. Whole exome somatic mutation analysis identified 84 mutations

total (15–26 mutations per sample) (S1 Table). After visualization in IGV this was narrowed to

32 high confidence mutations (1–11 mutations per sample). The average number of mutations

per sample was five (Table 1). Two somatic mutations were found in NF1. Three mutations

were cataloged in COSMIC (http://cancer.sanger.ac.uk/cosmic): CD5, NF1 and SFN. Addition-

ally, a mutation in HLA-A was present in the COSMIC Cancer Gene Census (http://cancer.

sanger.ac.uk/census) as known to cause cancer. Canonical pathway overrepresentation analy-

sis revealed the HIPPO pathway as significantly overrepresented (p value, 2.48E-4), which

included the genes SFN, RASSF1 and DLG-4 (Fig 1). Biologic network overrepresentation anal-

ysis identified Nervous System Development and Function as the most significantly overrepre-

sented (p value 4.98E-4), which included the genes: DLG4, HFE, HLA-A, and NF1.

Discussion

Patients with NF1 characteristically develop CN. The number, age of occurrence, and the

growth rates of these tumors are highly variable among individuals and even within the same

individual. The NF1 gene encodes for the protein Neurofibromin. Neurofibromin is a negative

regulator of the Ras/mitogen-activated protein kinase (MAPK) pathway[5]. As such, NF1 is

considered a classic tumor suppressor gene and its mechanism in NF1 is felt to be consistent

with Knudson’s two-hit hypothesis in which a patient carries a mutated germline NF1 gene

copy and tumor development, including CN, then requires a second hit[14]. While the germ-

line mutations in NF1 are well cataloged, with >1000 mutations identified to date, there is a

paucity of information on the assumed acquired somatic mutations in CN[15]. This deficiency

is likely related to both the difficulty of detecting somatic mutations in CN due to cellular het-

erogeneity within the tumors and also the small number of CN analyzed. Most analyses of

somatic mutations in CN identify high confidence NF1 mutations in only about half of the

tumors[4,7].

While biallelic inactivation of NF1 in CN is traditionally felt to be necessary for tumor

development, somatic mutations affecting other tumor suppressor genes, (TP53, CDKN2A and

RB1) have been identified in NF1 associated tumors including CN, suggesting that modifying

loci may be sufficient for tumor growth in the absence of a second NF1 mutation, or that the

acquisition of a mutation at a modifying loci, in addition to a second NF1 hit, may be a one of

the factors affecting tumor growth behaviors[7]. Complicating this picture is the fact that the

genotype-phenotype correlation of the underlying germline mutations is poorly understood

and thus, make interpretation of all findings muddied. In order to control for this, we per-

formed WES of three growing and three non-growing CN from a single patient with NF1 to

investigate if similarities and/or differences in the types of somatic mutations between growing

and now-growing CN could be identified.
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It has been hypothesized that certain germline NF1 mutations may predispose to particular

phenotypes. For example, germline splice site mutations in NF1 may increase the risk of tumor

development[16]. Similarly, full NF1 deletion is associated with early appearance and higher

burden of CN[17], while a 3-bp in-frame deletion of Exon 17 is associated with fewer CN[18].

Therefore, as a first step, we interrogated the germline to identify the germline NF1 muta-

tion in this individual. A single missense mutation, f2741v was identified. While this mutation

does not appear in COSMIC or cBioPortal (www.cbioportal.org), a frameshift insertion at the

same location has been reported. Copy number analysis did not reveal any copy number

variants.

Thirty-two high confidence somatic mutations were identified in the six samples. The only

recurrently mutated gene was NF1, which contained two deleterious mutations: a stop gain

(Growing 3) and an in frame deletion (Non-growing 1). Two other mutations in separate

samples were also cataloged in COSMIC: CD5 (Growing 1) and SFN (Non-growing 3). CD5

Table 1. Somatic Mutations in Growing and Non-growing Neurofibromas.

Samples

Growing 1 Growing 2 Growing 3 Non-Growing 1 Non-Growing 2 Non-Growing 3 Variant classification

RASSF1 x synonymous

TRAV9-1 x missense

SUDS3 x missense

KLHL20 x frameshift

CD5 x missense_variant

DLG4 x missense_variant

WIBG x missense_variant

UNC5CL x missense_variant

HFE x missense_variant

HECW1 x missense_variant

VPS36 x synonymous

COL22A1 x synonymous

UBASH3A x missense

CYFIP2 x missense

PTPRZ1 x sequence

RYR1 x synonymous

NF1 x stop gained

NF1 x disruptive inframe deletion

DCAF13 x missense

PSD2 x missense

SLC25A14 x synonymous, splice region

NIPBL x missense

ITIH1 x missense

INA x missense

PRTG x missense

TTC28 x missense

EIF4G1 x missense, splice region

ABCC3 x synonymous

SFN x synonymous

CYP17A1 x missense

NOA1 x missense

HLA-A x missense

doi:10.1371/journal.pone.0170348.t001
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encodes a transmembrane glycoprotein that belongs to the highly conserved scavenger-receptor

cysteine-rich superfamily. CD5 is felt to regulate antitumor immune response by potentiating

tumor-specific T-cell reactivity[19]. The mutation at CD5 is a missense mutation, Ser485Cys,

also reported in lung cancer (http://cancer.sanger.ac.uk/cosmic/mutation/overview?id=

689345). The SFN (Stratifin) gene encodes for the 14-3-3σ protein. The 14-3-3σ protein regu-

lates numerous cellular processes that are important in cancer biology, including apoptosis and

Fig 1. HIPPO Signaling Pathway. Components of HIPPO signaling pathway. Magenta circles represent genes/gene products mutated in NF1 tumors. 14-3-

3 protein is encoded by SFN gene.

doi:10.1371/journal.pone.0170348.g001
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cell-cycle checkpoints[20]. The mutation at SFN is a silent mutation, Cys96Cys, also reported in

biliary tract cancer (http://cancer.sanger.ac.uk/cosmic/mutation/overview?id=5511476).

In addition to the mutations present in COSMIC, the gene HLA-A (major histocompatibil-

ity complex; class I; A) is present in the COSMIC Cancer Gene Census, which is a catalog of

genes causally implicated in cancer. Loss of HLA class I antigens has been reported to be mecha-

nism by which tumor cells escape immune attack[21]. The HLA-A mutation is a missense

mutation, Lys292Glu. Four additional genes with mutations in our cohort have been reported

to play a role in tumorigenesis in the literature: TTC28, COL22A1, DLG4 and RASSF1. TTC28 is

a target of TP53 and is reported to inhibit tumor cell growth[22]. COL22A1 has been identified

as a recurrently mutated gene in lung cancer[23]. DLG4 has been suggested to function as a

tumor suppressor and is involved in the development of HPV related cancers[24]. RASSF1 is a

recognized tumor suppressor. RASSF1 promoter methylation is one of the most frequent alter-

ations found in human tumors[25]. Lastly a missense mutation in PRTG was of interest as it has

a known role in neurogenesis[26].

In order to investigate if any pathways were overrepresented in our gene sets we performed

a canonical pathway overrepresentation analyses using Ingenuity Pathway Analysis. Interest-

ingly, HIPPO signaling was identified as the single highly overrepresented pathway. The SFN,

RASSF1 and DLG-5 gene products exist with this signaling cascade. HIPPO signaling is known

to regulate cell cycle progression, apoptosis and cell differentiation[27]. Dysregulation of the

HIPPO pathway is felt to contribute to cancer development through tumor initiation and pro-

gression and has considerable cross-talk with the WNT, SMAD and NOTCH pathways[27–

29]. Dysregulation of the HIPPO signaling cascade has not previously been reported in NF1

and warrants further investigation.

One existing hypothesis regarding growth and arrest of CN is that NF1 mutation triggers

activation of Ras which then leads to oncogene induced senescence[30]. Additional mutations

are then necessary for escape from this senescence, arguing in favor of modifying genes as a

factor that could account for variable growth behaviors. This feedback cycle involves a number

of genes as reviewed by Courtois-cox et al[30]. No mutations were identified in these senes-

cence pathways. Further investigation of the transcriptome and epigenetic modifications of

growing and non-growing CN may help further investigate this hypothesis.

While our study generates a number of interesting hypotheses for further investigation, there

are a number of limitations. First, while our samples were separated into growing and non-

growing by serial physical exam by a single author, a more objective measurement of growth

was not obtained as the study was conducted in a retrospective fashion. The lack of an objective

measurement of growth could account for a portion of the difficult in identifying a unifying

theme among growing or non-growing CNs. Second, the fact that only 33% of the tumors had

identifiable mutations in NF1, despite good coverage at the NF1 locus, may reflect the known

difficulty in identifying somatic NF1 mutations due to cellular heterogeneity, or may reflect the

concept that mutations at modifying loci may be sufficient for CN growth and account for dif-

ferences in CN growth behavior. All samples appear to have a mutation in at least one gene that

could potentially be causative; however, whether these mutations are passenger or drivers is

unclear. There were no identifiable trends regarding the number of mutations or types of muta-

tions within or between growing and non-growing samples as hypothesized. Additional studies

with larger cohorts are needed to further investigate this question.

Conclusions

CN growth behavior in NF1 is poorly understood due to the multitude of variables potentially

effecting tumor development and growth. Here we performed WES on three growing and
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three non-growing CN from a single individual to test the hypothesis that somatic mutations

in modifying loci could account for differences in growth behaviors between growing and

non-growing CN. We identified between 1–11 mutations per samples with deleterious NF1
mutations in two samples. While provocative mutations were identified in each of the samples

at potential modifying loci, no trends were identified between mutations and in growing and

non-growing samples. Mutations in genes in the HIPPO pathway appeared to be over-repre-

sented. Additional studies of the exome and transcriptome, as well as epigenetic modifications,

in larger cohorts of growing and non-growing CN, are needed.

Supporting Information

S1 Table. Somatic mutations. All identified somatic mutations. Highlighted samples are high

confidence.
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