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Abstract

Background

Chronic Hepatitis B virus (HBV) infection can lead to the development of chronic hepatitis,

cirrhosis and hepatocellular carcinoma. We hypothesized that HBV might accelerate hepa-

tocyte ageing and investigated the effect of HBV on hepatocyte cell cycle state and biologi-

cal age. We also investigated the relation between inflammation, fibrosis and cell

cycle phase.

Methods

Liver samples from patients with chronic HBV (n = 91), normal liver (n = 55) and regenerat-

ing liver (n = 15) were studied. Immunohistochemistry for cell cycle phase markers and HBV

antigens was used to determine host cell cycle phase. Hepatocyte-specific telomere length

was evaluated by quantitative fluorescent in-situ hybridization (Q-FISH) in conjunction with

hepatocyte nuclear area and HBV antigen expression. The effects of induced cell cycle ar-

rest and induced cellular senescence on HBV production were assessed in vitro.

Results

13.7% hepatocytes in chronic HBV had entered cell cycle, but expression of markers for S,

G2 and M phase was low compared with regenerating liver. Hepatocyte p21 expression

was increased (10.9%) in chronic HBV and correlated with liver fibrosis. Mean telomere

length was reduced in chronic HBV compared to normal. However, within HBV-affected liv-

ers, hepatocytes expressing HBV antigens had longer telomeres. Telomere length declined
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and hepatocyte nuclear size increased as HBV core antigen (HBcAg) expression shifted

from the nucleus to cytoplasm. Nuclear co-expression of HBcAg and p21 was not observed.

Cell cycle arrest induced in vitrowas associated with increased HBV production, in contrast

to in vitroinduction of cellular senescence, which had no effect.

Conclusion

Chronic HBV infection was associated with hepatocyte G1 cell cycle arrest and accelerated

hepatocyte ageing, implying that HBV induced cellular senescence. However, HBV replica-

tion was confined to biologically younger hepatocytes. Changes in the cellular location of

HBcAg may be related to the onset of cellular senescence.

Introduction
Both the age of onset and the severity of liver injury in chronic hepatitis B virus (HBV) infec-
tion vary widely, from asymptomatic lifelong carriage to chronic hepatitis, cirrhosis and hepa-
tocellular carcinoma (HCC) [1]. There is a strong, unexplained correlation between increasing
age and the risk of cirrhosis or HCC [2].

The number of hepatocytes that express HBV antigens and their cellular distribution vary
with disease duration and disease progression [3, 4]. In the early ‘immune tolerant’ phase there
is strong nuclear HBcAg expression, with high titre HBV DNA, HBeAg and HBsAg in serum.
In the later ‘reactive’ phase, which accompanies HBeAg/anti-HBe seroconversion, serum levels
of HBV DNA and HBsAg fall, with a shift to cytoplasmic HBcAg expression [3]. Later still,
serum HBsAg and HBV DNA fall to low or undetectable levels and hepatocyte HBcAg is de-
tected rarely [4].

The marked fall in HBsAg and viral load with time and increased age contrasts with other
chronic viral infections such as HCV or HIV and remains unexplained. Such changes have
been attributed previously to enhanced host immune responses to HBV, but there is little evi-
dence that these are augmented with increased duration of infection or increasing age.

Hepatocyte senescence has been described in chronic liver disease and attributed to in-
creased hepatocyte turnover, often termed ‘replicative senescence’ [5], yet mitotic figures are
rare in chronic HBV infection. Hepatocyte cell cycle arrest, an alternative pathway leading to
premature hepatocyte senescence, is a feature of chronic HCV infection [6], non alcohol-relat-
ed fatty liver disease [7] and alcohol-related liver disease [8]. In these conditions increased he-
patocyte expression of p21, a universal cell cycle inhibitor, plays a key role in induction and
maintenance of cellular senescence where hepatocyte p21 expression correlates with fibrosis
stage and an adverse clinical outcome [6–8].

The purpose of the study was to determine if accelerated ageing and senescence were pres-
ent in liver tissue from patients with chronic HBV infection and to establish the relation be-
tween HBV antigen expression and ageing, senescence, inflammation and fibrosis.

Materials and Methods

Ethics
Archived human liver tissue was obtained from the Tissue Bank at Addenbrooke’s Hospital,
Cambridge (supported by the BRC) and St James’s University Hospital, Leeds. Written consent
for the use of liver tissue for research purposes and for archiving was obtained at the time of
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consenting for the procedure. Both Cambridge and Norfolk & Norwich Research Ethics Com-
mittees approved the study.

Patient sections
Chronic HBV infection was defined as the presence of HBsAg in serum for over 12 months
and patients were selected such that a comprehensive screen for other acute or chronic liver
disease was negative. None of the patients received antiviral therapy. Overall, sections were
available for study from 91 patients representing the full spectrum of inflammation and fibrosis
associated with chronic HBV infection. Liver sections were selected from this cohort to address
particular questions according to patient classification. Patients were classified according to
replication status: HBeAg-positive/anti-HBe negative and positive for HBV DNA in serum,
HBeAg negative/anti-HBe positive and positive for HBV DNA in serum and anti-HBe positive
but negative for HBV DNA in serum. Further classification was based on the hepatic activity
index (HAI) and fibrosis stage. (S1 Table). Where comparisons are made these are with age
and gender matched groups.

Every liver biopsy was performed as part of routine clinical assessment and reviewed by an
experienced histopathologist (SED). Biopsies were scored according to modified Ishak criteria
[9] after assessing specimen adequacy: interface hepatitis 0–4; lobular inflammation 0–4; portal
inflammation 0–4; fibrosis was scored 0 (absent)- 6 (cirrhosis); steatosis 0–4; the histological
activity index (HAI) was derived from these scores. HBsAg and HBcAg were
scored qualitatively.

Control liver sections for cell cycle phase experiments
Selected liver sections from archived formalin-fixed paraffin-embedded liver needle biopsy
specimens served as control tissue as described previously [6]. Ten patients undergoing liver re-
section for distant metastases (who had not received chemotherapy) with normal liver histolo-
gy served as negative controls. Fifteen patients undergoing liver biopsy in the early post
operative period after liver transplantation with histological evidence only of hepatic regenera-
tion were selected from a larger series because liver function tests returned to the normal range
promptly and these served as positive controls representing a discrete episode of liver inflam-
mation with resolution as described previously [6].

Control liver sections for Q-FISH experiments
Liver sections from 55 archived formalin-fixed paraffin-embedded liver needle biopsy speci-
mens from age-matched donor livers at the time of liver transplantation (time-zero biopsies),
served as controls, as described in detail previously [10]. These sections of adequate size were
chosen to reflect normal liver on the basis of satisfying all of the following criteria: no history of
liver disease or senescence-related disease in the donor; a short medical illness preceding donor
death; no or minimal reperfusion injury or steatosis at histological review; excellent graft func-
tion 1-year after transplantation.

Virology
Serum HBsAg was sought using ADVIA Centaur immunoassay (Siemens, Surrey, UK), con-
firmed with polyclonal HBsAg (Vidas); HBeAg and anti-HBe with the Vidas platform (Bio-
merieux, Hampshire UK). Serum HBV DNA was quantified at the HPA, Addenbrooke’s
Hospital, Cambridge, by LightCycler assay. HBsAg titres were measured with the Elecsys
HBsAg II Kit (Id. No. 04687787).
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Immunohistochemistry, immunofluorescence and Q-FISH
Immunohistochemistry for cell cycle markers and immunofluorescence for hepatocytes was
performed as described previously [6, 10]. The cell cycle markers included Mcm-2, cyclin D1,
cyclin A, cyclin B1 and PH3, which represent different phases of the cell cycle. [MCM-2: cell
cycle entry; cyclin D1: G1 phase; cyclin A: S phase; cyclin B1: G2 phase; PH3: transition from
G2 through mitosis]. In addition immunohistochemistry was used to detect p21, a cdk inhibi-
tor, which blocks cell cycle progression at G1.

Immunofluorescence for HBV antigens was carried out in both cell cycle phase and Q-FISH
experiments using similar methods with a series of murine monoclonal antibodies to HBV an-
tigens. All antibodies to identify cell cycle phase markers, hepatocytes, HBsAg, HBcAg and
HBeAg are listed in S2 Table.

Telomere-specific probes were hybridised to liver sections and images captured using the
Olympus ScanR High Content Screening platform. Telomere number, telomere intensity (a
measure of telomere length) and nuclear area of hepatocytes were determined using Q-FISH as
described previously [10]. Nuclear area was calculated as described previously [10]. Hepato-
cytes were identified using antibody to Hepar-1 (S2 Table).

Assessment of HBV antigen production in relation to cell cycle arrest and
cellular senescence in hepG2 and hepG2.2.15 cell lines
HepG2 and hepG2.2.15 cell lines were used to assess the effect of cell cycle arrest and cellular se-
nescence on HBV production. HepG2.2.15 cells are transfected stably with sub-genomic HBV;
thus HBV production is a result of transcription of the transgene. Aphidicolin was used to induce
G1/S arrest and camptothecin to induce G2/M arrest. Brief exposure to 1mM hydrogen peroxide
was used to induce cellular senescence; the cell lines are immortal so do not undergo replicative
senescence on serial passages. Cell cycle distribution was assessed by flow cytometric analysis of
DNA content and 5-bromo-2'-deoxyuridine (BrdU) incorporation. Cellular senescence was as-
sessed by morphology, senescence-associated β-galactosidase staining and BrdU incorporation.
HBsAg production by HepG2.2.15 cells was assessed in supernatant using a commercial enzyme
immunoassay (AxSYMHBsAg V2, Abbott, Germany). Supernatant HBVDNA was measured
with an in-house RT-PCR assay. HBcAg was assayed by immunofluorescence. Since variation in
supernatant HBsAg and HBV DNA could be explained by variation in final cell numbers HBsAg
and HBV DNA were corrected for cell number per well using lactate dehydrogenase activity.

Statistics
Statistical analysis was performed on GRAPH PAD Prism5 software (Graph Pad, San Diego,
USA) and SPSS (version 18) using the linear regression test as data demonstrated a normal dis-
tribution. A p-value of 0.05 or less was considered significant. Two-tailed unpaired t-tests were
used to define differences between means of normally distributed data of equal variance. A
Mann-Whitney test was used for data that were not distributed normally. Wilcoxon matched-
pairs signed rank test was used to compare different populations of cells within the same tissue.
One-way ANOVA test was used for comparison between multiple groups and correlations be-
tween variables were calculated using logistic regression analysis and a linear regression model.

Results

Cell cycle phase markers (n = 39)
Representative experiments for cell cycle phase markers in patients with chronic HBV infection
are shown in Fig 1. Hepatocyte Mcm-2 expression was higher in regeneration compared with
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chronic HBV infection (26% versus 13.7% respectively, p = 0.02). Hepatocyte cyclin D1 expres-
sion was similar in both (53% and 43% of Mcm-2 positive hepatocytes respectively p = 0.26).
In contrast hepatocyte expression of Cyclin A, Cyclin B1 and PH3, were all higher in regenera-
tion compared to chronic HBV infection {cyclin A 16% vs. 3% (range 2–37% vs. 0–67%),
p< 0.0001, cyclin B1 2% vs. 0% (range 0.3–10% vs. 0–28%), p< 0.0001, and PH3 4% vs. 0.7%
(range 0.3–10% vs. 0–55%), p = 0.000, see also S1 Fig). In those with chronic HBV there were
strong associations between hepatocyte Mcm-2 expression and both increased fibrosis stage
(p = 0.02) and increased inflammation (p = 0.007).

Median hepatocyte p21 expression was increased in regeneration and chronic HBV infec-
tion (9.5% and 10.9% respectively). Median hepatocyte p21 expression was associated with in-
creased fibrosis stage in chronic HBV infection (p = 0.006) and increased HAI (p< 0.0001).

HBV antigen expression and cell cycle entry (n = 8)
Sections from 8 patients with chronic HBV positive for HBV DNA in serum were double-la-
beled for Mcm-2 and HBcAg. The median number of HBcAg positive hepatocytes also positive
for Mcm-2 was 55% (range 29–93%, Fig 1).

HBV antigen expression and cell cycle progression (n = 5)
Sections from patients with chronic HBV positive for HBV DNA in serum were double-labeled
for HBcAg and cyclin A (Fig 1). In each case the whole biopsy was examined for hepatocyte co-
expression of cyclin A (denoting an hepatocyte in S phase) with HBcAg, but this was never seen.

HBcAg and p21 co-expression (n = 13)
Thirteen liver sections were further selected from patients with HBV replication, as well as
liver injury, in order to ensure inclusion of hepatocytes that were known to express HBcAg and
p21. Hepatocyte co-expression of HBcAg and p21 was not observed.

Thus, in chronic HBV infection, very low hepatocyte expression of S-phase markers and
markers beyond S phase in the cell cycle was consistent with G1 arrest.

Expression of the cell cycle entry marker Mcm-2 was associated with increased inflamma-
tion, increased fibrosis and viral replication.

p21 which mediates cell cycle arrest was associated with increased inflammation and
increased fibrosis.

Viral replication was limited to those hepatocytes that had entered the cell cycle, but was
never detected in cells expressing cell cycle arrest.

Effects of cell cycle arrest and induced cellular senescence on HBV
production in HepG2.2.15 cell line
In vitro induced cell cycle arrest caused increased levels of supernatant HBsAg and HBV DNA.
In addition increased HBcAg expression was noted in cell-cycle arrested hepatocytes. In

Fig 1. Hepatocytes are arrested in G1 in chronic HBV infection. Immunoperoxidase staining using cell
cycle phase-specific antibodies in a representative case of chronic HBV infection A—E. Immunofluorescence
showing the relation between HBcAg expression and Mcm-2 (F) and cyclin A (G). A: Mcm-2 identifies cells
that have entered the cycle. B: Cyclin D1, expression is maximal during G1. C: Cyclin A is expressed
maximally during S phase. D: Cytoplasmic expression of Cyclin B1 during G2, nuclear and cytoplasmic
expression. E: Phosphorylated histone 3 protein expressed in mitosis. F: Immunofluorescence for Mcm-2
(green) and HBcAg (red), showing frequent co-localisation (yellow). G: Immunofluorescence for cyclin A
(green) and HBcAg (red). Co-localisation was never seen.

doi:10.1371/journal.pone.0127511.g001
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contrast no effect on HBsAg or HBV DNA production was observed in senescent cells, with
only a modest increase in cytoplasmic HBcAg staining.

Q-FISH for telomeres (n = 39)
Fig 2 is a representative example of hepatocyte staining in chronic HBV. Comparison was
made with 55 age and sex matched sections control. Overall, the mean number of telomeres de-
tected per hepatocyte was similar in chronic HBV infection and controls (Table 1). However,

Fig 2. Q-FISH of liver tissue in chronic HBV infection. Hepatocytes with cytoplasm stained green with antibody to Hepar-1, nuclei stained blue with DAPI
and telomeres shown in pink. Note vacuolated nuclei with peripheral telomeres as seen in senescence (13).

doi:10.1371/journal.pone.0127511.g002

Table 1. Q-FISH analysis of hepatocytes.

Chronic HBV infection Controls

Mean Standard deviation Mean Standard deviation

Number of telomeres per hepatocyte 8.9 2.9 12.8 2.6

Mean of mean telomere length (Cy5 intensity) 166 * 119 465 159

Mean of maximum telomere lengths 253 * 183 721 229

Telomere area 8.9 * 1.3 10.2 1.5

Nuclear area in pixels (μm2) 4195 (48.5) 524 4205 (48.6) 496

* Values for patients with HBV differed significantly from controls (all p < 0.0001).

doi:10.1371/journal.pone.0127511.t001
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the mean number of telomeres detected per hepatocyte fell in parallel with the viral load
(p = 0.04, Fig 3).

Mean telomere length was shorter in patients with HBV than in controls (166 (SD 119) and
465 (SD 159) respectively, p< 0.0001). The mean of maximum telomere length was also
shorter in patients with HBV than in controls (253 (SD 183) and 721 (SD 229) respectively,
p< 0.0001). Mean telomere area was reduced in patients with HBV than in controls (8.9 (1.3)
and 10.2 (SD 1.5) respectively, p< 0.0001, Table 1).

Hepatocyte nuclear area (n = 39)
Mean hepatocyte nuclear area was similar in patients with HBV and controls (4195 or
48.5 μm2 (SD 524) and 4205 or 48.6 μm2 (SD 496) respectively, Table 1). However, this finding
masked considerable polymorphism in hepatocyte nuclear area in patients with chronic HBV
infection when compared with controls (Fig 4A and 4B); in patients with chronic HBV

Fig 3. Themean number of telomeres in normal and HBV-infected liver tissue according to viral load.

doi:10.1371/journal.pone.0127511.g003
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infection, the proportion of hepatocytes with nuclear area less than 2 standard deviations
below the mean (derived from normal liver) ranged from 16.5% to 59.9% and the proportion
of hepatocytes with a nuclear area that exceeded 2 standard deviations above the mean ranged
from 3.3% to 48.8%. The proportion of hepatocytes with large nuclei (more than 2 standard de-
viations above the mean) correlated positively with fibrosis stage (p<0.0001), but there was no
correlation between fibrosis stage and the proportion of hepatocytes with smaller nuclei.

HBsAg positive hepatocyte telomeres (n = 9)
Liver sections were chosen such that they contained sufficient hepatocytes expressing HBsAg.
Hepatocytes that expressed cytoplasmic HBsAg detected by immunohistochemistry, which

Fig 4. (a) Hepatocyte nuclear area in normal liver. A representative example of nuclear area distribution in
normal liver. (b) Hepatocyte nuclear area in HBV infected liver. A representative example of nuclear area
distribution HBV-infected liver.

doi:10.1371/journal.pone.0127511.g004
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could be clearly identified as distinct from neighbouring hepatocytes, were analysed separately
(Fig 5A) and the results were compared with all hepatocytes detected with anti-Hepar-1 within
the same section.

In each individual section the number of telomeres detected and the telomere length was al-
ways higher in HBsAg positive hepatocytes than in ‘all hepatocytes’. Overall, the mean number
of telomeres detected in HBsAg positive hepatocytes and ‘all hepatocytes’ was (14.4 (SD 3.6)
and 8.2 (SD 3.3) respectively, p = 0.004). Overall in the 9 sections, the mean telomere lengths

Fig 5. (a) A representative example of a liver stained for HBsAg in chronic HBV infection. HBsAg is detected in cytoplasm as green. Nuclei are blue
(DAPI) and telomeres stain pink. (b) Mean telomere length in HBsAg+ hepatocytes versus ‘all hepatocytes’.

doi:10.1371/journal.pone.0127511.g005
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in HBsAg positive hepatocytes and ‘all hepatocytes’ were (219 (SD 40) and 136 (SD 49) respec-
tively, p = 0.027)(Fig 5B).

Mean nuclear area was similar in HBsAg positive hepatocytes when compared to ‘all hepa-
tocytes’ (4420 and 3866 μm2 respectively, p = 0.074).

HBcAg positive hepatocyte telomeres (n = 10)
Sections from patients with chronic HBV infection were selected specifically for those with de-
tectable HBV DNA in serum. Comparison was made between hepatocytes that expressed
HBcAg, detected with immunohistochemistry and ‘all hepatocytes’ in the same section de-
tected with anti-Hepar-1 (Fig 6A and 6B). Further analysis was also carried out according to
the intracellular location of HBcAg: nuclear alone, cytoplasmic alone or both nuclear
and cytoplasmic.

In each section mean telomere length in HBcAg positive hepatocytes always exceeded that
in ‘all hepatocytes’ (Fig 7A). Overall, telomere length in hepatocytes with nuclear HBcAg ex-
pression alone was greater than in ‘all hepatocytes’ (p = 0.01, Fig 7A). Telomeres were longer
with nuclear HBcAg expression alone compared to hepatocytes in which HBcAg was expressed
in both nucleus and cytoplasm (p = 0.004, Fig 7A) while hepatocytes with cytoplasmic HBcAg
alone had even shorter telomeres (p = 0.027, Fig 7A).

In each section the number of telomeres was always higher in HBcAg positive hepatocytes
compared to ‘all hepatocytes’. There were always more telomeres in hepatocytes in which
HBcAg was expressed either in the nucleus alone or in the cytoplasm alone or in both com-
bined nucleus and cytoplasm when compared to ‘all hepatocytes’ (p = 0.064, p = 0.027,
p = 0.037, Fig 7B).

Mean nuclear area in hepatocytes with nuclear HBcAg expression alone was similar to ‘all
hepatocytes’. However, nuclear area was greater when HBcAg was detected in cytoplasm alone
or both nuclear and cytoplasmic expression (Fig 7C, p = 0.01).

HBeAg positive hepatocyte telomere (n = 6)
Q-FISH was performed in further sections from patients with chronic HBV infection (Fig 8),
selected for the presence of HBeAg in serum. Comparison was made between hepatocytes in
the same section that expressed HBeAg detected by immunohistochemistry and ‘all hepato-
cytes’ detected with anti-Hepar-1.

Telomere length in each section was always greater in HBeAg positive hepatocytes than ‘all
hepatocytes’. However, in this small series (limited by tissue availability) mean telomere length
in HBeAg positive hepatocytes was similar to that in ‘all hepatocytes’ (p = 0.13), while the num-
ber of telomeres was greater in HBeAg positive hepatocytes than ‘all hepatocytes’ (p = 0.004,
data not shown).

Linear regression analysis (n = 39)
This was used to investigate associations between clinical, demographic or histology data in-
cluding age, sex, albumin, bilirubin, ALT, PT, HBeAg/anti-HBe status, HBV-DNA status,
HBsAg titre, the presence of interface hepatitis, portal tract inflammation, lobular inflamma-
tion, steatosis, fibrosis stage, hepatocyte expression of HBsAg/HBcAg with data derived from
Q-FISH including the number of telomeres, mean telomere length, maximum telomere length
and nuclear area. Only significant associations are reported.

In chronic HBV infection serum albumin and age were associated with the number of telo-
meres detected (p< 0.05); the number of telomeres detected fell with increasing age after ad-
justing for albumin. Unexpectedly, higher levels of serum albumin were associated with
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reduced telomere number after adjusting for age. Increased steatosis was associated with
shorter telomeres (p< 0.01) and reduced maximal telomere intensity (p< 0.02) but did not
correlate with fibrosis. Portal tract inflammation and fibrosis stage were related to nuclear area
(p< 0.05). Increased portal tract inflammation was related to increased nuclear area after ad-
justing for staging (p = 0.029). Increased fibrosis stage was related to increased nuclear area
after adjusting for portal tract inflammation (p = 0.0003). Higher serum albumin and decreas-
ing age were associated with smaller hepatocyte nuclei (p< 0.05) after adjusting for age and
albumin respectively.

Discussion
This study presents key findings, which are consistent with the clinical pattern of HBV replica-
tion over many years and link HBV replication, antigen expression, inflammation and fibrosis
to biological ageing of the hepatocyte.

Hepatocytes in patients with chronic HBV infection had evidence of cell cycle arrest in G1;
HBV replication was confined to cells that had entered the cell cycle; cells unable to complete
the cell cycle (p21 positive) were never positive for markers of HBV replication; the proportion
of hepatocytes that expressed either Mcm-2 or p21 correlated with hepatic inflammation and
fibrosis stage.

Induction of cell cycle arrest in an HBV-transfected cell line led to increased HBV produc-
tion (S2 Fig), consistent with previous findings [11]. Further, induction of cell cycle arrest in an

Fig 6. (a) Nuclear and cytoplasmic HBcAg staining detected by Q-FISH in liver from a representative patient with chronic HBV infection. HBcAg
stains bright green, nuclei stain blue with DAPI and telomeres stain pink. (b) Nuclear HBcAg staining detected by Q-FISH in liver from a representative patient
with chronic HBV infection. HBcAg stains bright green, nuclei stain blue with DAPI and telomeres stain pink.

doi:10.1371/journal.pone.0127511.g006

Fig 7. Telomere length, telomere number and nuclear area according to the subcellular location of
HBcAg.

doi:10.1371/journal.pone.0127511.g007
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HBV-transfected cell line was found to correlate with a shift in expression of HBcAg to the cy-
toplasm. These are in vitro findings in a malignant cell line and support the clinical relation be-
tween HBV replication and cell cycle arrest and senescence. Cell cycle arrest in G1 or G2 is
known to provide an environment conducive to enhanced replication for many viruses; manip-
ulation of host cell cycle state or telomerase expression to enhance viral replication has been
described for HCV, CMV, HIV, EBV, HHV-8, HPV and HTLV-1 [6,12].

Telomeres are repetitive sequences that protect the ends of linear chromosomes, but small
telomere sequences are lost during each round of cell division; thus telomere length is a crude
measure of cell turnover and therefore of ‘biological age’. This may at a critical point trigger the
DNA damage response. Terminally differentiated cells, such as hepatocytes, replicate infre-
quently in health and hepatocyte telomeres do not shorten with age in healthy liver [10].

Fewer telomeres were detected in patients with chronic HBV infection compared to controls
(presumably a reflection of telomeres below the level of detection) and when telomeres were
detected they were shorter than in matched controls. However, within each HBV infected liver,
hepatocytes expressing HBV antigens had a greater number of telomeres and longer telomeres
than HBV antigen negative hepatocytes. This finding was more marked in those hepatocytes
with nuclear HBcAg alone; hepatocyte telomere length and number fell as the location of
HBcAg moved from nucleus to the cytoplasm. Thus the greatest number of telomeres and the
longest telomeres were found in those with markers of a higher viral load i.e. the presence of
HBeAg and HBV DNA in serum, as well as nuclear HBcAg. Increased nuclear area is a

Fig 8. Nuclear HBeAg staining in a representative patient with chronic HBV infection. HBeAg stains bright green, nuclei stain blue with DAPI and
telomeres stain pink.

doi:10.1371/journal.pone.0127511.g008
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recognised marker of senescence [13]. In this series hepatocyte nuclear area correlated closely
with both inflammation and fibrosis stage and was greater in hepatocytes with cytoplasmic
HBcAg as opposed to nuclear HBcAg expression.

Widespread hepatocyte telomere shortening is consistent with accelerated ageing, which
has been described in chronic HBV [14] but also in liver cirrhosis due to other aetiologies [5].
Until recently, telomere shortening observed in liver cirrhosis was thought to be due to in-
creased cell turnover resulting in replicative senescence. However, accumulating evidence data
shows that cirrhosis is more often associated with cell cycle arrest. Prolonged cell cycle arrest
can lead to cellular senescence directly. This has been shown in non-alcohol-related liver dis-
ease [7], alcohol-related liver disease [8] and chronic HCV infection [6]. Our study lends fur-
ther support to a similar phenomenon occurring in chronic HBV infection.

HBV antigens were detected in hepatocytes that had longer telomeres than background
liver, albeit shorter than in health. This suggests either HBV entry or HBV replication is less ef-
ficient in ‘older hepatocytes’ and is compatible with the natural clinical history of HBV infec-
tion with substantial falls in both serum HBV DNA and HBsAg titre with each decade. HBeAg
loss usually occurs, although at a variable age between individuals [15, 16] and is accelerated by
antiviral therapy. Although HBsAg titres fall with age, HBsAg loss is less frequent with or with-
out antiviral therapy and if it occurs, then it is many years later than HBeAg loss.

Since host immune responses, indicated by impaired T-cell responses to HBV antigens and
mitogens tend to weaken and narrow with time [17–20] it seems less likely that a stronger host
immune responses can account for this gradual decline in HBV replication. A virus-driven
change in HBV antigen expression in relation to increasing age and duration of infection
seems more logical.

The change in cellular HBV antigen localisation with disease progression, first reported
many years ago [3], is also consistent with the age driven changes in HBV expression described
here. Nuclear HBcAg expression, characteristic of the early “immune tolerant phase” was asso-
ciated with the longest telomeres, while cytoplasmic HBcAg expression (seen with more ad-
vanced disease) was associated with shorter telomeres relative to those with nuclear HBcAg.
Furthermore, the total number of hepatocyte telomeres fell with progression from the early
stages of chronic HBV infection (HBeAg positive) to late stage (anti-HBe positive with unde-
tectable HBV DNA). These results indicate that temporal changes in the cellular location of
HBV antigens correlate with increasing biological age of hepatocytes.

Furthermore, the nuclear size of hepatocytes increased as HBcAg expression shifted to the
cytoplasm and there co-localisation between p21, a marker of senescence and HBcAg expres-
sion was never seen. These results suggest that the increasing biological age of hepatocytes and
possibly the onset of cellular senescence are related to changes in the location of the HBV anti-
gens. The mechanisms underlying the location of HBcAg in more advanced disease in man or
with cellular senescence induced in vitro point to altered intracellular transport.

It is also possible that the intense inflammatory process that occurs during HBeAg/anti-
HBe seroconversion and which often leads to severe fibrosis may be due to ‘ageing hepatocytes’
and onset of cellular senescence. For many decades it was believed that it was due to enhanced
immune responses after decades of HBV infection. Hepatocyte senescence is pro-inflammatory
and in this series both p21 and nuclear area, which are close correlates of senescence, were re-
lated to inflammation as well as fibrosis. This may be mediated by the senescence-associated se-
cretory phenotype (SASP), involving secretion of numerous cytokines, growth factors and
proteases by senescent cells, which is well described and linked to inflammation and fibrosis in
other diseases [21].

Hepatocyte cell cycle arrest and senescence appear to be common to several chronic liver
diseases but there are some differences. In NAFLD and ALD, the frequency of hepatocyte p21
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expression was much higher [7, 8] than hepatocyte Mcm-2 expression; in viral hepatitis hepa-
tocyte p21 and Mcm-2 expression were similar [6]. The viruses may induce cell cycle arrest, fol-
lowing which Mcm-2 is lost eventually [22] and hepatocytes then become senescent. In
contrast, both non-alcohol related fatty liver and alcohol related liver diseases are characterised
by oxidative stress, which might induce hepatocyte senescence directly. Steatosis may be a fea-
ture of chronic HBV infection; in this series hepatic steatosis correlated inversely with telomere
length, despite inclusion of HBV patients with a normal BMI and without diabetes mellitus or
hyperlipidaemia. Thus steatosis might exacerbate accelerated hepatocyte ageing and senescence
in patients with HBV infection.

In conclusion, we have shown that chronic HBV infection induces G1 arrest mediated by
p21. Cell cycle entry and cell cycle arrest correlated positively with inflammation and fibrosis.
HBV replication was confined to younger hepatocytes in cell cycle arrest amongst a population
of more aged hepatocytes. The shift of the HBcAg location from the nucleus to the cytoplasm
related to the onset of cellular senescence.
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