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Abstract

Electroencephalographic (EEG) oscillations in multiple frequency bands can be observed during functional activity of the
cerebral cortex. An important question is whether activity of focal areas of cortex, such as during finger movements, is
tracked by focal oscillatory EEG changes. Although a number of studies have compared EEG changes to functional MRI
hemodynamic responses, we can find no previous research that relates the fMRI hemodynamic activity to localization of the
multiple EEG frequency changes observed in motor tasks. In the present study, five participants performed similar thumb
and finger movement tasks in parallel EEG and functional MRI studies. We examined changes in five frequency bands (from
5–120 Hz) and localized them using 256 dense-array EEG (dEEG) recordings and high-resolution individual head models.
These localizations were compared with fMRI localizations in the same participants. Results showed that beta-band (14–
30 Hz) desynchronizations (power decreases) were the most robust effects, appearing in all individuals, consistently
localized to the hand region of the primary motor cortex, and consistently aligned with fMRI localizations.
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Introduction

The synchronization and desynchronization of oscillatory

electroencephalographic (EEG) activity is believed to reflect basic

neurophysiological processes that are fundamental to information

processing by the brain. Oscillatory events provide clues to how

information is organized within particular brain regions, and how

it is shared between multiple regions to form functional networks

[1,2,3,4,5]. For example, previous studies have shown that

increases and decreases in beta-band oscillations (13 to 30 Hz)

and high gamma-band activities (over 60 Hz) play important roles

in motor control [6,7].

In invasive studies, local field potentials recorded from

intracranial electrodes over sensorimotor cortex revealed rhythmic

neural activities that were interrupted by activating neurons

involved in movement preparation and execution [8]. Using

noninvasive EEG and MEG techniques, researchers have shown

frequency specific amplitude (or spectral power) changes before

and after movements. These changes involve decreases in

amplitude, perhaps reflecting the interruption of ongoing oscilla-

tory activity by functionally active neuronal populations, as shown

by Murthy and Fetz [8], or increases relative to a specified

baseline. Decreases are referred to as event-related desynchroni-

zation (ERD), and increases are referred to as event-related

synchronization (ERS) [9].

ERDs in the beta (13–30 Hz) band are observed approximately

500 ms before a movement, and they can last until movement

execution [10]. A corresponding rebound or ERS in the beta band

is typically observed 300 to 1000 ms after movement onset

[11,12]. The beta ERD/ERS pattern can also be observed during

passive movement, motor imagery [13], and action observation

[14].

EEG/MEG studies have observed changes in other frequency

bands during motor tasks as well [12,15,16,17,18]. Oscillations in

the theta band (4–7 Hz) ERS have been observed during pre-

movement, movement, and post-movement intervals [19,20]. This

theta band activity may contribute to event-related potential

averages because it becomes phase-locked to the movement [1].

This theta band activity is believed to reflect coordination of

premotor and motor activity with response monitoring functions of

the medial prefrontal cortex [20].
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Mu-band (8–13 Hz, also referred to as alpha-band) ERD is

observed during the same time interval as the beta-band ERD

activity. It is believed that both mu and beta band activity may

reflect the coordination of the motor act with sensory (e.g.,

movement cues) and cognitive processes [11]. Unlike beta-band

activity, mu-band activity does not show a post movement ERS

but rather ERD. The post-movement mu-band ERD is believed to

reflect the continued activation (perhaps subthreshold) of the

motor cortex.

In contrast, the post-movement beta ERS is thought to reflect

motor inhibition and the processing of somatosensory feedback,

although this interpretation remains controversial [21]. An

alternative hypothesis is that the post-movement beta-band ERS

might reflect a reset of the motor system in order to prepare for (or

a switch to) the next movement [22].

Recent research has revealed changes in the high frequency

bands associated with movements, including the low-gamma (LG,

31–60 Hz) and high gamma frequency bands (HG, 61–250 Hz).

Like activity at mu and beta bands, HG band activity is also

observed in the pre-movement period [16]. However, HG band

activity in this interval is seen as a power increase (i.e., ERS). Also

like mu and beta band ERDs, the HG band ERS is localized at the

scalp to the contralateral electrodes that lay over the motor cortex.

HG-band activity appears more focal than either mu or beta

ERDs and therefore may reflect local recurrent network processes

(e.g., binding of neuronal activity within a small neuronal

population) involved in the formation and maintenance of a

motor activity [23,24]. In contrast to HG-band activity, the mu

and beta frequency are believed to be too slow to support local

processes [25]. Evidence of these HG activities, observed from

MEG studies, has been corroborated mainly with EEG recordings

using invasive electrocorticogram (ECoG) recordings [26,27,28].

We are only aware of a few scalp EEG studies examining motor

related HG activity [15,16,25]. These studies found movement-

related HG activity that was localized to the contralateral motor

area.

Given the close relationship of electrophysiological recordings to

neuronal activity, an important question has been the relation

between these measures and the BOLD hemodynamic response of

fMRI. An influential study by Logothetis et al. examined this

question with invasive recordings in monkeys [29]. The results

showed that local field potentials in the gamma range were

positively correlated with the BOLD response; neuronal action

potentials were not significantly related to the BOLD response.

Since that seminal study, many studies have been performed in

humans with intracranial recordings to examine the relation of

local EEG oscillations to the BOLD response. As reviewed by

Ojemann et al. [30], gamma-band activity, as recorded by

intracranial electrodes, is typically observed to be positively

correlated with BOLD activation, whereas lower frequency

intracranial EEG activity is negatively correlated with BOLD.

The relation between BOLD activity with scalp recorded EEG

has been observed as well. For example, Scheeringa and

colleagues [17] confirmed that gamma-band activity is indeed

positively correlated with the BOLD response and that activity at

lower frequencies (i.e., alpha and beta) are negatively correlated.

Moreover, gamma- and lower-band activities contribute uniquely

to prediction of the BOLD response. However, studies that

examined the relation between scalp EEG and hemodynamic

response used simultaneous EEG and fMRI recordings, making

source localization of the EEG activity unfeasible, due to the

sensitivity of source analysis techniques to noise. This shortcoming

is a potential limitation when the goal is to understand the relation

of EEG oscillations to the BOLD response in specific regions of

cortex. Recently, Yaun et al. [31] performed parallel recordings,

allowing localization of EEG activity in individual subjects, and

compared the source activity to BOLD data. They confirmed that

activities in the alpha and beta bands in the sensorimotor cortex

are negatively correlated with fMRI activation in the same region.

Given the interest in the relation between BOLD activity and

EEG signals and the functional significance of signals in different

EEG bands, knowledge about the localization of each signal (and

their reliability) relative to the BOLD activations will contribute to

our understanding of this relation. However, in order to answer

this question and because source estimation of the EEG data is

exquisitely sensitive to noise, EEG-fMRI joint recordings are not

appropriate due to the difficulty associated with cleaning the

ballistocardigram artifact from the EEG when recorded in the

MRI scanner. In addition to the strict requirement for artifact free

data for accurate source estimates, source estimation also requires

accurate head models to capture the tissue geometries and

conductive properties of individual participants. These parameters

describe how current propagate from the cortex to where they are

measured on the scalp, and mischaracterization of these param-

eters compromise the accuracy of source estimates [4]. Finally, for

comparison with BOLD data, the head model used for source

estimates should be relevant for the registration of the BOLD data.

In the present study, parallel recordings (rather than joint) were

performed in the same participants performing similar motor

tasks, and high-resolution head models were constructed for each

individual. We employed improved methods of electrical source

imaging (ESI) with a 256 dense-array electroencephalographic

(dEEG) recording and examined the localization of all the typical

frequency bands of the EEG in relation to the locations of the

BOLD responses.

Materials and Methods

1. Participants
Five participants with normal or corrected-to-normal vision (3

males and 2 females, age 22–55, all right handed users) were

recruited to participate in both EEG and fMRI studies. All

participants reported no history of neurological disorders nor were

they taking medications that are known to affect the EEG (e.g.,

anticonvulsants). All participants provided and signed informed

written consent prior to participation. They were given a copy as a

reference and reminder of the information conveyed. Institutional

Review Boards (IRB) at Electrical Geodesics Inc. (EGI) and the

University of Oregon approved the human subject use protocol for

the present study.

2. EEG Acquisition
EEG data were acquired with a 256-channel HydroCel

Geodesic Sensor Net (EGI, Eugene, OR) using Net Station 4.5

software. The locations of 256 electrodes are shown in Figure 1(B).

All electrode impedances were below 70 KV before recording was

started [32]. Recordings were referenced to the Cz electrode. The

data was digitized with a 24-bit A/D converter at a 1 KHz sample

rate.

3. Tasks and EEG Recording
Participants were seated 60 cm in front of a monitor with their

chin on a chin rest, which standardized positions across all

participants and minimized head movements. Participants were

instructed to place the response hand (either left or right hand) on

a 4-button response pad. A stimulus (the words ‘‘Thumb’’ or

‘‘Pinky’’) was presented on the screen to inform subjects which

finger to use (note that the ‘‘Pinky’’ condition was not analyzed in

EEG/fMRI Source Localization
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the present study). The stimulus remained on the screen until it

changed to instruct participants to use a different finger.

Participants were asked to fixate on the stimulus in order to

minimize eye movements.

Prior to data acquisition, participants were provided an

opportunity to practice the task to get a feel for the pace of the

task, and the experimenter provided participants with feedback

about their performance relative to the.5 Hz target rate. That is,

although the cue instructed participants which finger to use, it did

not instruct them when to move the finger; participants decided

when to move the finger with the goal of making a movement once

every two seconds. All participants were able to establish a

response rate close to the 0.5 Hz target rate after a few minutes of

practice.

The study was divided into eight six-minute blocks. Participants

were allowed to take short breaks between blocks. Response hand

was grouped by block, and within each block the finger used was

determined by the cue, alternating between thumb and little finger

in intervals that varied between 3–10 seconds. The total

experiment time, including recording set up, was approximately

2.5 hrs.

4. EEG Data Analysis
4.1 Data Preprocessing. The continuous EEG data were

digitally filtered between 1,120 Hz, and a 60 Hz notch filter was

used to eliminate line noise. Trials with time-locked movement

responses were extracted from filtered data. The data were divided

into left thumb and right thumb conditions. The time period of a

single trial was from 1000 ms before the response onset (the time

point when the thumb pressed the response pad) to 1000 ms after

response onset. Within each trial, bad channels were identified

(defined as those with EEG.200 mV after smoothing with a

moving average that is 80 ms long) and replaced using spherical

spline interpolation. Epochs with artifacts due to eye blinks or

muscle movements were detected and removed based on their

typical signal characteristics and abnormal amplitude information

(625 mV). Only artifact-free epochs were retained for further

analysis. The data were also re-referenced to the common average

signal across all electrodes. Overall, the preprocessing procedure

resulted in 164–197 trials per condition.

4.2 ICA Denoising. After EEG preprocessing, independent

component analysis (ICA) was performed in EEGLAB [33] with

the extended Infomax algorithm using weight changes of 1027 as a

stop criterion to find the maximally temporally independent

signals available. For each subject, the independent components

(ICs) outside of the brain (primarily scalp or neck muscle activities),

related to artifacts, and large residual variance were removed. The

remaining independent components (ICs) were projected back to

channel space then submitted to time-frequency (TF) analysis.

4.3 Time-Frequency Analysis. Time-frequency analysis was

performed on individual trials based on the Morlet wavelet

analysis [34]. The time-frequency representation of power changes

elicited by a movement was measured using a Gaussian window

[35]. In this analysis, a total of 7 cycles was used to estimate the

amplitude and phase of the signal. The wavelet’s center

frequencies range from 1 to 120 Hz in resolution of 1 Hz. The

time window was moved in 10 ms increments, sliding across all

time points. The power value of a single-trial was calculated for

each time interval and frequency bin across all trials. Power

changes (i.e., ERD and ERS, expressed in percentage change)

were defined relative to the average of to the baseline interval

(21000,2600 ms prior to the button press, where movement-

related activity should be minimal, see Darvas et al. [15]) for each

frequency. ERD and ERS were visualized after averaging across

all trials. The frequency bands were defined as follows: theta = 5–

8 Hz, mu = 9–13 Hz, beta = 14–30 Hz, low gamma = 31–60 Hz,

high gamma = 61–120 Hz.

5. Head Modeling
Accurate estimates of cortical sources of scalp recorded voltage

data required the construction of high-resolution electrical head

models (Figure 1). High-resolution head models included accurate

brain tissue segmentation, EEG sensor position registration, and

specification of conductivity values for each tissue [4,36,37,38,39].

Additionally, dipoles work constrained to be perpendicular to the

cortical surface. This has been shown to improve accuracy of

source estimates [40].

We employed BrainK [41] to perform tissue segmentation from

each participant’s high resolution structural MRI data. Tissue

segmentation classified each image voxel into the following tissue

types: eyeball, scalp, skull, cerebral-spinal fluid (CSF), gray matter

(GM), white matter (WM) and air. The WM and GM were further

partitioned into the cortical surface and the cerebellum. The

following conductivity values (in Siemens/meter) assigned to each

tissue type are based on previously reported literature values:

Eyeball = 1.5, Scalp = 0.44, Skull = 0.018, (CSF) = 1.79, (GM)

= 0.25, and (WM) = 0.35 [36].

To specify dipole positions, the cortical surface was first

characterized through the use of triangular meshes, which were

parceled into patches of approximately equal size. All models used

in the present study contained 1200 dipole patches per

hemisphere. For each patch, perpendicular directions of vertices

within the patch were averaged to derive the average, perpendic-

ular orientation for that cortical patch. Once the head models

Figure 1. Individual head model for EEG source estimation and BOLD registration. A) Tissue segmentation of scalp (yellow), skull (brown),
cerebral-spinal fluid (green), gray matter (blue), white matter (red), and air (purple). B) 256-channel EEG sensors registered on the scalp. C)
Reconstructed cortical surface. Colors patches on the cortical surface represent dipole patches. D) M1 (green) and S1 (yellow) ROIs defined for the left
hemisphere in one subject.
doi:10.1371/journal.pone.0112103.g001
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were created, EEG sensor positions for each individual participant,

derived from Geodesic Photogrammetry System (GPS) [42], were

registered to the respective scalp surface. From the complete head

model, a lead field matrix (LFM), which describes the propagation

of current from each dipole position to each EEG sensor positions,

was computed using the finite difference method (FDM) [43].

6. Cortical Source Estimation
Estimating neural sources of the frequency data involves the

following steps: (a) wavelet transformation of the EEG data, (b)

source estimation of the data in step (a), and (c) calculation of the

ERD/ERS relative power changes in step (b). That is, a wavelet

transform is first conducted to isolate the EEG frequency of

interest for source localization, after which each frequency band of

the continuous data set is transformed into source space through

step (b). Finally, ERD and ERS metrics are computed for all dipole

patches.

TF analysis was performed on individual trials using the

following two equations:

vi(t, f )~

ð?

{?

Wi(t)y�t, f (t{t)dt, ð1Þ

Where W(t) represents the scalp EEG data, y�t, f indicates the

mother wavelet function, * is the complex conjugate, and

vi(t, f )[Q256 is the vector of wavelet coefficients for trial (i). Note

that Q represents complex numbers.

yt,f (t)~
1ffiffiffiffiffiffiffiffi
2pf

p exp (
{(t{t)2

2s2
) exp (i2pf t), ð2Þ

The Morlet wavelet function consists of a complex exponential

multiplied by a Gaussian window. The trade-off ratio was set as 7

to create a wavelet family and s2 was 7=2pf . The tradeoff between

spectral and time resolution was defined as a constant ratio, which

is typically recommended to be greater than 5 in order to

encompass at least one full sinusoidal cycle for any particular

frequency [44]. The real and imaginary wavelet components,

which represented the TF windows, were used for source

estimation.

Estimation of cortical sources was performed using the

standardized low resolution tomography (sLORETA) between

scalp potentials and source amplitudes can be stated as the linear

model:

W(t)~KJ(t)ze(t), ð3Þ

where W(t) is the scalp potential measured at Ne~256 electrodes,

J[RNv are the values of the distributed source dipoles, K is the lead

field matrix (LFM), and e(t) is the error term. Note that R

represents real numbers. Many linear inverse methods can be

obtained as the solution of the minimization problem:

ĴJ~ arg min
J

W{KJk kf 2zlJT WJ
�

, ð4Þ

ĴJ~KT KT KzlW
� �{1

W, ð5Þ

where W{KJk k2
is the data fidelity term, and lJT WJ is the

regularization term. l is the regularization weighting constant, J is

the vector of source amplitudes (as defined above), and W defines

the inverse technique (e.g., Minimum Norm, LORETA, LAURA

etc.). In equation 4 (ĴJ~ arg min
J

W{KJk kf 2
zlJT WJ

�
), W in

the present study is the identity matrix. Therefore, what is

minimized in the entire lJT WJ term is lJ2, which is the J with

minimum energy (i.e., the minimum norm).

The sLORETA method [45] is obtained by standardizing the

minimum norm (MN) solution. In particular we may write

ĴJsLORETA~TsLORETAW with the sLORETA source estimation

matrix TsLORETA~STmn, where Tmn~KT KT KzlINe½ �{1
is the

MN estimator, is a diagonal matrix, and Sl,l~ Cll½ �{1=2
.

sLORETA was applied to the complex-values derived from

wavelet analysis and is expressed as

ĴJX ,i(t, f )n~TX vi(t, f )n, ð6Þ

where X is the sLORETA method applied to the complex value v
for a given source location (n) at time window t for a given trial (i)
and frequency (f).

Additionally, the form of the analysis being described does not

depend on X and it can be applied by other inverse solution

methods.

Relative power changes (i.e., ERD/ERS) were calculated by

comparing power at a particular time t� and frequency f � window

to a baseline power computed from data in the 21000 to

2600 ms window, as defined above in the Time-Frequency

Analysis section above.

We first computed the squared absolute value of each point and

subsequently average power of the dipole sources across trials, as

A(t�, f �)[RNd

A(t�, f �)n~
1

N

XN

i~1

D̂jj(t�, f �,n,i)D2, ð7Þ

where we employ the notation DZD2~a2zb2 for a complex

number Z~azbi.

Baseline power is computed using the source-localized Morlet

wavelet coefficients corresponding to the same frequency f �, but at

a time point chosen such the wavelet lies within the 21000 to

2600 ms window. Due to the design of the wavelet filters, the

length of the time window varies with f � (higher frequency

wavelets are supported on a small time window). We chose the

baseline time tbasesuch that the Morlet wavelet has the form (a,

2600 ms). The baseline at frequency f � is then the vector

B(f �)[RNd with components

B(f �)n~
1

N

XN

i~1

D̂jj(tbase, f �,n,i)D2, ð8Þ

We then define the (vector of) relative power differences at each

dipole by

EEG/fMRI Source Localization
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P(t�, f �)n~
(A(t�, f �)n{B(f �)n)

B(f �)n

|100, ð9Þ

This relative power changes P(t�,f �) can be referred to as ERD or

ERS, depending on whether it is negative or positive, and whether

f � is in the HG band.

7. Evaluation of Source Estimates
In order to assess the ability to estimate the source generators of

the observed ERD/ERS changes for individual participants, first

we defined the regions of interest (ROIs) for the primary motor

cortex (M1) and primary somatosensory cortex (S1) for each

participant, see example in Figure 1(D). The hand region of M1

has been anatomically and functionally localized to an inverted

omega-shaped knob (V) or a horizontal epsilon shape (viewed from

axial slices) [46]. As noted by Yousry et al. [46] in intact brains

(i.e., without structural abnormalities) and viewing the structural

MRI data from the axial plane, high inter-rater reliability ratings

were obtained for locating the hand-knob. In fact, in all subjects of

the present study, the hand-knob was easily identified in the axial

plane. Relative to functional localization of hand and finger

movements to this region, we performed transcranial magnetic

stimulation (TMS) for verification. The data were acquired for a

different study and not presented here, but in all cases, TMS

confirmed that finger movements were maximally activated in the

identified M1 ROI.

Relative to the location of the hand-knob, the hand area of the

S1 has been anatomically defined as a separate inverted omega (V)

that resides ,1–2 cm inferior to the hand-knob in the adjacent

postcentral gyrus [47,48]. In the present study, we identified the

motor hand-knob landmark in an anatomical T1 MRI for all

subjects and used all cortical dipoles patches residing in this

location as our definition of M1. For S1, we selected the cortical

dipole patches in a strip of the postcentral gyrus that runs 1–3 cm

inferior to our definition of M1 and houses an inverted omega

shape. The number of dipoles in combined M1 and S1 ROIs is

between 23,28 for each hemisphere for each subject. We selected

a representative dipole from the combined M1/S1 ROIs that was

on the central sulcus.

Next, five measures of source localization performance were

calculated. The first measure was defined as the Euclidean

distance from the representative dipole (anatomical position) to the

peak and center of gravity (COG) positions of EEG and BOLD

functional activity. This measure is calculated using the following

formula:

dhk~2DPN
i~1 ĴJi

�� ��riPN
i~1 ĴJi

�� �� {rtest2D, ð10Þ

where rtest is the representative dipole, ri is the location of ith

source, and ĴJi is the estimate of the dipole activity at location ri.

The second measure is the distance of the EEG source location to

the BOLD activity (peak to peak and COG to COG). The third

measure is quantified as the ROI activity ratio (ROI-AR) and is

defined as number of active dipoles in M1 and S1 to all dipoles

within those ROIs. The fourth measure is defined as the ratio of

the mean activity within the ROIs relative to the mean activity of

the same hemisphere (ROI-SHR). The fifth measure is the ratio of

the mean activity within the ROIs relative to the mean activity of

both hemispheres (ROI-BHR). Standard error of the mean (SEM)

is calculated for all measures.

8. MRI Data Acquisition
8.1 Structural MRI. To derive anatomically accurate model

of soft head tissues, T1-weighted scans using Siemen’s MPRAGE

sequence (repetition time (TR) = 2.5 sec; echo time (TE) = 3.4 ms;

flip angle (FA) = 8 degrees) with a 16161 mm resolution covering

256 voxels in each spatial direction. Data were acquired in Siemen’s

3T Skyra (subjects 1–4) or 3T Allegra (subject 5) scanners using 20-

channel, head-neck coil and a quadrature birdcage head coil,

respectively. Parallel imaging reconstruction was not performed.

Sequence times were 10 minutes 39 seconds on both systems.

Foam padding was used to minimize head movements, and all

subjects were highly cooperative and experienced with minimizing

head motion over extended data collection periods. Good contrast

and little to no artifacts were observed, with effective resolutions

approaching the highest achievable for the sampling used. The

head-only Allegra system images in the extreme inferior temporal

regions (only) have lower contrast and there are localized blood

flow artifacts (also in inferior regions), but these quality issues have

little or no impact on either fMRI coregistration or tissue

modeling.

8.2 Tasks and fMRI Acquisition. The task structure is

similar to the structure for the EEG recordings; participants were

cued, with a letter near fixation, to move either the thumb or little

finger forward and back about 2 cm (compared with pushing a

response pad for EEG task), self-paced at about 2 Hz (compared

with.5 Hz for EEG task). Finger movement blocks consisted of 3 to

10 second periods, interspersed with rest blocks (no movement).

The total duration for each block type was approximately equal;

for example, for each block type there were about 3.33 times as

many 3-second blocks than 10-second blocks. The length and

ordering of each block (thumb, little finger or rest) was a

pseudorandom permutation of all block variations, with no two

sequential blocks of the same type. For example, a thumb block of

any length was followed by either a little finger or rest block of any

length. The total duration of a single motor fMRI run was

5.5 minutes for a single hand. The experiment was repeated for

the each hand.

Functional data were acquired with a 3T Siemens Allegra head

only MRI system. Whole-brain gradient echo EPI images were

obtained with the following parameters: TR = 2 seconds,

TE = 30 ms, and FA = 80u. We collected 32 axial slices with a

thickness of 3.125 mm with interleaved acquisition order. We used

a Siemens’ Prospective Acquisition Correction (PACE) protocol to

compensate for head-motion in real time prior to acquisition of

each whole brain image. No substantial motion was accounted for

by PACE. In every fMRI run, the absolute compensation for

displacement and rotational excursions across a session was less

than 1.0 mm and 1.0 degrees, respectively. Inter-scan differences

rarely exceeded 0.1 mm and 0.1 degrees.

9. fMRI Analysis
FMRI data processing was carried out using FEAT Version

5.98, part of FSL [49] (FMRI Expert Analysis Tool; FMRIB’s

Software Library, www.fmrib.ox.ac.uk/fsl). The following pre-

statistics processing was applied; slice-timing correction; spatial

smoothing using a Gaussian kernel of FWHM 4 mm; grand-mean

intensity normalization; high-pass temporal filtering (cut-

off = .0125 Hz), and residual motion correction. The task-related

regressor was modeled as boxcars convolved with the FSL default

canonical hemodynamic response function. Separate boxcars

represented each digit movement and rest trial time courses.

EEG/fMRI Source Localization
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Time-series statistical analysis using the general linear model

(GLM) was carried out using FMRIB’s improved linear model

(FILM) with local autocorrelation correction [50]. Functional

images were coregistered to each individual participant’s T1-

weighted structural image with 6 degrees of freedom (translation

and rotation only), which was then coregistered and resampled to

the FSL standard brain (MNI/ICBM 152 template [51] using

FMRIB’s linear image registration tool (FLIRT) with 6 degrees of

freedom [52]. Statistical maps were then resampled to

16161 mm resolution for direct comparison to the structural

image.

10. Registration of BOLD Data to Cortical Surface
Functional activation data from fMRI (BOLD) were mapped to

the cortical surface used for dEEG source estimation (see above).

To map the functional data to the dipole surface of the electrical

head model, a transformation matrix was calculated that maps the

fMRI volume into the space of the structural image used to

generate the cortical surface. Each fMRI voxel was then related to

a single dipole patch, with each dipole patch containing multiple

fMRI voxels. The average number of voxels per dipole patch was

247. To determine the BOLD activity of each dipole patch, we

first set a 2.5 Z-score threshold to statistically define an active

voxel. Next, because there are multiple voxels within a dipole

patch and in order to deal with outliers, we set a second threshold

(‘‘fractional threshold’’) that specified the percentage of voxels in a

dipole patch that must exceed the Z-score. We used a fractional

threshold of 25%. For dipole patches that met these criteria, the

voxels with activations over the Z-score threshold were then

averaged to represent the activity of that dipole patch. The

remaining dipole patches were set to zero.

Results

Figure 2 presents the ERP recorded from an electrode over the

contralateral motor cortex for a single subject. Familiar move-

ment-related potentials can be observed in the movement

execution period, particularly the negative going potential prior

to the button press and positive peaks following the response [19].

Time-frequency analysis of individual trials that make up the ERP

capture not only the frequency specific changes that are phase-

locked to the response but also the non-phase locked features,

providing a more detailed and comprehensive view of the brain

changes associated with motor control. Although there are

important motor-related low-frequency activities [53], low-fre-

quency information requires a longer time interval. Because of the

requirement for more data, it is difficult to obtain enough artifact-

free trials at these longer intervals for analysis. Therefore,

following time-frequency analyses are focused on frequency bands

above 4 Hz.

Contralateral motor area (channels C3/C4) time-frequency

ERD/ERS maps for left and right thumb (RT/LT) movements

are shown in Figure 3. We focused on the movement preparation

and movement execution (up to the time of button press) periods.

Movement-related ERD/ERS activities that were considered

actual signals (i.e., not artifactual) were defined as those activities

not restricted to just one channel but rather multiple contiguous

channels (greater than 3, due to volume conduction). Only ERD/

ERS activities that satisfied this requirement are highlighted in

Figure 3 by boxes.

Starting with low frequency changes, pre-response theta-band

ERS can be observed in two subjects. Unlike theta-band energy

increases, mu-band energy changes were observed as an ERD,

and this was present in four subjects (only subject 3 showed this

response for both left and right thumb movements). The most

robust spectral change is observed at the beta frequency; in all

subjects for both response hands this was observed as an ERD.

Unlike other spectral changes, beta-band ERD is sustained over

hundreds of milliseconds and extends well into the post response

period. The well known ‘‘beta rebound’’ (ERS) can be seen in all

subjects and conditions, except subject 3 LT, and follows the

termination of the beta band ERD (not highlighted in Figure 3).

Low gamma-band activity was evident in three subjects and high

gamma-band activity was present in all five subjects, although not

in all conditions. Both low and high gamma-band activities are

always seen as ERSs. Compared to lower frequency spectral

changes, gamma-band ERSs are temporally discrete and can

repeat several times before the button press (e.g., S1, S2, S4).

Table 1 shows the mean relative power changes (regardless of

location) associated with left and right thumb movements at

contralateral C3/C4 channels and S1/M1 source for each

frequency. A paired t-test did not reveal any statistical differences

between the overall power changes associated with left and right

thumb movements.

Localizations of Frequency Band Changes and BOLD
Activation

Examples of sources associated with power changes in each

frequency band are illustrated in Figure 4. ERD/ERS activities

are shown at the scalp with the corresponding source estimates (on

both wrinkled and inflated cortical surfaces, the latter showing

activity in the sulci). Figures 5 and 6 show the localization results

obtained with fMRI and beta-band ERD. In all 10 sessions (5

subjects and 2 conditions) for beta-band, activities are localized to

the contralateral hemisphere at the anatomically estimated

position of the hand representation in M1, to the adjacent

primary somatosensory cortex, as well as extending slightly beyond

these borders. The EEG source data represent activity that is equal

to or greater than 97% of the maximum activity measured over all

dipole patches. As noted in the Methods section, BOLD data at

the cortical surface represent activity that are equal to or greater

than a Z-score of 2.5 and 25% fractional threshold for each dipole

patch.

Figure 7 summarizes the localization results for BOLD activa-

tion as well as source estimates for spectral band related changes.

In this figure, both peak activation and COG locations are plotted

Figure 2. Time-course of average EEG trace (i.e., event-related
potential) from channel C3 (bandpass: 1–120 Hz) during right
thumb movement in one subject. Color bars on horizontal axis
mark categorical time periods (see text).
doi:10.1371/journal.pone.0112103.g002
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for comparison. As can be seen, BOLD peak activation is located

in M1 of both contralateral hemispheres in two subjects (S2 and

S5) and one contralateral hemisphere in the other two subjects (S1

and S3). The peak location for S4 was just posterior to the M1

ROI for RT, but for LT it was clearly mislocalized according to

the anatomical landmark. These results hold even when the COG

measure is considered.

In S1, BOLD peak activity for the left thumb condition was just

ventral to the M1 ROI. This is mainly due to the fact that there is

strong activation of secondary somatosensory cortex for this

condition (see Figure 6). For S3, the left thumb condition did not

show much BOLD activation in the M1 ROI (see Figure 6). For

S4, not only was BOLD activity in the M1 ROI lacking

(particularly for the LT condition), it was also lacking in primary

somatosensory cortex (see Figure 6). In fact, in S4, activity was

generally not present in the pre and post central regions for LT.

Therefore, we explored whether activity in M1 could be identified

if we relaxed the threshold criteria. When the fractional threshold

was set at 10% (with the Z-score threshold kept at 2.5) activity in

the M1 ROI can be observed for S3 (although the peak of the

activation remains unchanged as expected). In S4, activation in the

M1 ROI is not observed, even at this threshold level.

In the EEG analysis, the frequency that consistently localized to

the M1 ROI is beta-band. The exceptions were for the S2 left

thumb condition for the peak measure, and S2 left thumb and S5

right thumb conditions for the COG measure. Although high

gamma-band activity was present in most subjects (7 sessions out

of 10), it was localizable (when peak location was considered) to

M1 in only five sessions, and it was only localized to M1 in both

hemispheres for S5. With COG as the metric, high gamma-band

localization was in the primary somatosensory ROI for S3 and S5

(left thumb) rather than M1 ROI.

The remaining frequency bands showed much more variable

localization. When both M1 and S1 are considered, however, the

localizations of most frequency ERD/ERS activity are within

these two ROIs. Particularly interesting is the comparison of the

BOLD activation and ERD/ERS localizations in S3 and S4 for

the left hand condition. For these subjects, localization of EEG

activity appears to be more precise than that for BOLD, with the

BOLD activity clearly centered outside and at some distance from

either ROI.

Localization Performance
Table 2 presents two distance measures. The first measure

quantifies (across all subjects) the mean distance from the central

sulcus to the peak and COG positions of BOLD and frequency

specific ERD/ERS. This measure standardizes the distance metric

to an anatomical position that allows for comparison between

EEG and BOLD localization, and has been used by others for

distance calculation in the evaluation of source localization

accuracy for S1 activity [54]. The second measure quantifies the

distance of the EEG sources to the BOLD activity (using peak-to-

peak and COG-to-COG). To put the distance measurement in

perspective, the average distance from the center of one dipole

patch to a neighboring dipole patch is approximately 7 mm.

Relative to the central sulcus, the peak BOLD position is largest

of all the measures, due to the fact that in the S4 left thumb

session, noted above, peak activity was not observed in M1 or S1.

When this session was excluded from the distance calculation, the

mean BOLD peak and COG were reduced to 14.686 mm (64.38)

and 12.824 mm (62.31), comparable to the EEG measures.

Although mu-band activity has the lowest peak distance measure,

it was only seen in five out of ten sessions, and the difference

between the distance measure for mu-band activity and the next

smallest distance (beta-band) is about one dipole patch position.

When the outlier session for the beta-band (S2 LT) localization

was removed, peak distance measure was reduced to 10.792

(61.73), comparable to the mu-band localization but with lower

standard error. Theta-, LG-, and HG-band locations are

approximately equivalent. When the COG measure is considered,

beta-band activity shows the smallest distance measure, even when

the outlier was not removed (7.596 (62.94), with outlier removed).

Relative to the BOLD positions, theta-band activity showed the

closest correspondence to BOLD. The beta-band results in

Table 2 include the outlier session (S2 LT). When this session

was removed from the analysis, the Peak and COG metrics were

reduced to 19.492 (63.03) and 16.876 (62.49).

To compare the cortical spatial extent of BOLD and EEG

frequency-band changes, three metrics were calculated: 1) ROI-

AR, 2) ROI-SHR, and 3) ROI-BHR. These performance metrics

are highest for the beta and mu EEG measures. However, these

EEG measures were still not as responsive and discriminating as

the BOLD measure, even when S4 left thumb session is included,

as in Table 3. When we exclude S4’s left thumb session from the

BOLD ROI-AR and ROI-SHR/ROI-BHR metrics, these values

Figure 3. Subject specific time-frequency plots for left and right thumb movements. Data represent thresholded (top 10%) relative power
changes (blue = decrease, red = increase, and light green = no significant change) at contralateral EEG channels (C3/C4). Time frequency maps
aligned at time = 0 ms (pink dashed line). Horizontal dash lines represent frequency band boundaries. Boxes represent ERD/ERS changes that are not
artifactual (see text).
doi:10.1371/journal.pone.0112103.g003

Table 1. Average relative power changes for different frequency bands during left and right thumb movements for scalp (C3/C4)
and source (M1 and primary somatosensory) data.

Scalp (%) Source (%)

Frequency RT LT RT LT

Theta 43.64 23.71 50.38 33.76

Mu 37.57 23.16 46.73 30.47

Beta 29.64 29.12 39.99 39.76

LG 17.03 20.87 41.90 40.65

HG 37.67 25.71 80.27 56.77

doi:10.1371/journal.pone.0112103.t001
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increased to 0.504 (60.07) in ROI-AR, 15.460 (63.81) in ROI-

SHR and 20.815 (66.23) in ROI-BHR.

Discussion

In the present study, we examined the spatial resolution of

movement-related spectral changes in the 256-channel dense-

array EEG (dEEG) in multiple frequency bands using source

localization to the individual’s cortical surface with high-resolution

individual head models. These effects were examined in the

movement preparation and movement execution periods before

the button press and were compared to movement-related BOLD

changes in the same individuals. Although the BOLD analysis

characterized movement-related activity, the lack of temporal

resolution precludes separation of pre-movement from post-

movement activity.

Although the BOLD results of course varied with the degree of

thresholding of the effect, the BOLD measure showed greater

ROI-AR (more activity in the ROI) and ROI-SHR/ROI-BHR

metrics (less activity outside the ROI) than any of the EEG

Figure 4. Movement-related spectral changes at the scalp and source for single subjects at four frequency bands. All scalp and source
estimate results are thresholded at 95% and 97%, respectively. The scalp activities are indicated by either relative power decrease (ERD) or increase
(ERS).
doi:10.1371/journal.pone.0112103.g004
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measures. There were consistent BOLD effects in the postcentral

(somatosensory) cortex as well, but given the lack of temporal

resolution, we could not discern whether these were related to the

movement preparation or the somatosensory response to the

button press.

EEG effects were observed across a wide frequency band and

could be isolated to the pre-movement and movement intervals.

The EEG effects were observed in all subjects and conditions, and

it was the beta-band desynchronization (ERD) that showed the

most robust effect. This finding is similar to the observation by

Seeber et al. [55], using 120 EEG channels in a walking task and a

boundary element head model, that beta-band activity was more

consistent compared to mu-band activity, localized to the medial

aspect of the sensorimotor cortex. Although the beta ERD was not

highly focal in the present study, it was centered on the hand area

consistently. When peak activity was examined, beta-band sources

were localized to the hand region of M1 in 9 out of 10 sessions.

When COG was used as the metric, beta-band activity was

localized to the M1 in 8 out of 10 sessions.

Figure 5. fMRI BOLD response and cortical distributions of beta-band premotor ERD during right thumb movements. Each column
represents a different subject. The thresholds for the beta-band ERD were set 95% at scalp and 97% at source for each subject. The z score of BOLD
activation was . = 2.5 and fraction 25% (see text). M1 and S1 ROIs are represented by green and yellow colors, respectively.
doi:10.1371/journal.pone.0112103.g005

Figure 6. fMRI BOLD response and cortical distributions of beta-band premotor ERD during left thumb movements. Each column
represents a different subject. The thresholds for the beta-band ERD were set 95% at scalp and 97% at source for each subject. The z score of BOLD
activation was set at . = 2.5 and fraction 25% (see text).
doi:10.1371/journal.pone.0112103.g006

EEG/fMRI Source Localization

PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e112103



The localization of beta-band ERD to the hand knob region of

M1 in the present study is consistent with magnetoencephalo-

graphic (MEG) findings that show 20-Hz, finger movement-

related MEG oscillations to be localizable to the hand knob region

[56,57]. Of the studies that have examined beta-band ERD, the

research performed by Yuan et al. [31] is the most comparable to

our study. These authors used parallel EEG (62-channel) and

fMRI studies to localize finger and foot movement-related

activations. Similar to our study, the fMRI activation was located

in the M1 hand region for hand movements. Beta-band activity

spanned both the pre- and postcentral gyri at the level of the hand

representation, but peak location was in the postcentral gyrus. The

difference in beta-band localization between the present study and

those obtained by Yuan et al. [31] may be due to EEG channel

count difference as well as the resolution of the head models

employed. In this study used many more EEG channels as well as

higher resolution head models.

The frequency that showed the second most robust response

was the high gamma-band. It was present in 7 out of 10 sessions

and was located in M1 in 5 sessions. Ball et al. [16] showed, using

intracranial EEG recordings, that high gamma-band activity was

predominantly localized to the hand and arm representation

region in M1. These researchers observed high gamma-band

activity along the midline which we did not observe. This could be

due to the fact that they had a much more complicated self-paced

motor task that likely required more planning, which would be

expected to engage the motor planning regions of the medial

prefrontal cortex, such as the SMA. Low gamma-band activity was

seen uniquely (i.e., not in the presence of high-gamma band

activity) in only one (S4, RT) of the three sessions, and it was

localizable to M1 in one session. Localization results for alpha- and

theta-band activities were variable relative to the hand area (M1

ROI). As noted, Seeber et al. [55] found localization of alpha-

band to be somewhat variable. For theta-related movement

potentials, Luu and Tucker [20] found that regions spanning the

primary motor and primary somatosensory cortices were source

generators of the scalp potentials.

An important finding was that for both BOLD and EEG

measures, the movement-related activity was typically observed in

both primary motor and somatosensory areas, similar to the

observations by Yuan et al. [31]. Additionally, activity was also

observed in contralateral premotor, secondary somatosensory, and

parietal cortices. Although activation of multiple regions observed

in the BOLD data could be attributed to the poor temporal

resolution between pre- and post-response intervals, this pattern

was also observed with EEG data, where the data analysis clearly

focused on activity prior to the button press. The non-focal nature

of the EEG source solution could be due to poor spatial resolution,

including the impact of different tissue resistivities to current flow

(which causes smearing), the sparse sampling (,2 cm intersensor

distance) of the scalp potential field, and the ill-posed nature of the

inverse problem. Whereas these imprecisions are clearly impor-

tant, we think that the activities in both somatosensory and motor

cortices are indeed characteristic of the neurophysiology of cortical

action control for several reasons.

First, it has been shown structurally that, unlike the structural

isolation of other primary sensory areas from each other and from

primary motor cortex, primary motor and somatosensory areas

share direct u-shaped cortical connections [58]. Second, exami-

nation of single unit responses in M1 and primary somatosensory

cortex show functional inter-leaving of motor and cutaneous

responses, particularly within the central sulcus [59]. Finally, direct

recordings from the cortical surface in humans show that motor-

related beta-band ERDs are recorded by local electrodes over

both primary motor and somatosensory cortices [60].

Although BOLD responses spanned both somatosensory and

motor cortex, the peak activation or COG metrics were located in

Figure 7. Magnified views of EEG and BOLD locations relative
to M1 (green) and S1 (yellow) ROIs. The left hemisphere and right
hemispheres are presented for RT and LT conditions, respectively.
doi:10.1371/journal.pone.0112103.g007

Table 2. Mean distance (6SEM). Anatomical position is distance relative to central sulcus.

Anatomical position (mm) Distance from fMRI (mm)

Peak COG Peak COG

BOLD 19.831 (66.47) 18.211 (65.80)

Theta ERS 18.691 (66.91) 14.776 (65.81) 12.178 (61.47) 11.670 (63.05)

Mu ERD 9.927 (64.99) 16.407 (62.87) 14.718 (64.11) 15.363 (61.86)

Beta ERD 15.394 (64.85) 11.978 (65.11) 23.636 (65.16) 19.725 (63.60)

LG ERS 19.778 (66.08) 24.123 (69.49) 26.950 (68.07) 22.008 (69.18)

HG ERS 17.436 (63.92) 21.780 (62.66) 19.955 (64.53) 23.230 (65.35)

The mean distance calculations are across subjects.
doi:10.1371/journal.pone.0112103.t002
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M1 or just posterior to M1 (with the exception of S3 and S4 LT)

but never in primary somatosensory cortex. Similarly, although

beta band-activity covered a wider area than M1, peak and COG

metrics also were always located primarily to M1 (with exception

of S2 LT), in contrast to all other frequency changes. This finding

is remarkably similar to those reported by Miller et al. [60], who

compared beta- and theta-band localization (recorded with intra-

cranial electrodes) relative to fMRI, and found that it was beta-

band activity for thumb movements that overlapped the most with

BOLD activation.

When both peak and COG measures of localization accuracy

were measured in relation to the central sulcus at the level of M1

and primary somatosensory cortex (as done by Bai et al. [54]), the

beta-band ERD was the most accurate indicator (when the S2 LT

outlier was removed). BOLD localization showed the second best

performance (when S4 LT session was excluded). Mu-band

localization was equivalent to beta-band localization only for the

peak measure. Localization results showed that the remaining

frequency bands were less likely to be located in M1.

When the peak and COG locations of the BOLD response were

used as the target location measures, theta-band activity is closest,

followed by mu- and beta-band activity. Low and high gamma-

band activities had the least consistent relation to the BOLD

locations.

With respect to ROI-AR, ROI-SHR, and ROI-BHR perfor-

mance metrics, the BOLD response was the superior measure. Of

the EEG measures, when considering these metrics, mu-band and

beta-band changes showed the best discrimination of location,

regardless of the employed threshold (see Table 3). For the several

reasons of spatial imprecision noted above, including the limited

number of electrodes over the motor area, the EEG localization is

expected to be technically inferior to the BOLD measure.

However, it could also be that the EEG changes are indeed less

focal than the hemodynamic response, reflecting the nature of

inter-regional communication processes indexed by oscillatory

activity.

In this respect, it may be important that Miller et al. [60]

recently reported with intracranial (subdural) EEG that broad-

band, non-oscillatory EEG activity is sufficiently focal to discrim-

inate individual finger movements. Interestingly, the broadband

changes thought to index unsynchronized neuronal firing were

entrained to the phase of beta-band oscillations, and these beta

oscillations were not focal but were synchronized over larger

regions than just the active finger. It will be important in future

research to determine whether such broadband changes, which

have only been reported for intracranial recordings, can be

observed with scalp (head surface) EEG, and whether they

demonstrate the precision of the intracranial broadband data.

Limitations of the Present Study
Even though we defined the ROIs based on well-known, easy to

identify, and validated landmarks of the primary hand region [46],

this is still a manual process. Our definitions of the two ROIs are

likely larger than the actual functional M1 and S1 hand areas, but

they will not affect the primary performance measures as the ROIs

are applied equally to all ERD/ERS and BOLD localizations.

Moreover, we tried to mitigate this manual ROI definition

through the use of the central sulcus for the distance comparison,

as others have done [56].

A second limitation is that the resolution of the localization for

both EEG and BOLD measures is limited by the size of our dipole

patches. Because BOLD activation, which is at the voxel

resolution, was grouped into dipole patches, the resolution of

BOLD reported in the present study is not optimal. However, this

approach did allow us easily register the BOLD data to the same

space as the EEG source data, allowing direct comparisons in

relation to the individual’s cortex. Third, some metrics, such as

ROI-AR and ROI-SHR/ROI-BHR, are dependent on the

threshold employed for both EEG and BOLD data. However,

even with this dependency, it does appear that BOLD results are

not only more sensitive but more specific than EEG localization

with the present methods.

A third limitation is our choice for BOLD statistical thresholds.

We did not use standard procedures for setting single-subject

statistical thresholds while accounting for multiple comparisons.

We did examine standard statistical parametric maps that account

for multiple comparisons, and the results revealed variable

statistical power between subjects. However, the results obtained

with this standard approach hid, to some degree, the commonality

of responses across subjects that we wished to examine with our

threshold choices.

Finally, in the present study, we only focused on the localization

of oscillatory activity, but it is possible that other EEG signals that

have been shown to be much more focal, such as broadband

activity noted above, could be much more sensitive and specific.

Conclusions
In studying the localization of movement-related ERD/ERS of

the EEG using high-resolution head models, in comparison to

BOLD localization, we found that across all frequency bands,

beta-band ERD was the most robust response (being present in all

subjects and conditions) and was consistently centered on the hand

area. Beta-band ERD had the lowest localization distance to the

central sulcus, even when compared to the BOLD measure. Beta

ERD was similar to BOLD in being consistently focused on M1.

BOLD responses were always more sensitive and specific in

relation to focal activations than any of the EEG measures.

Table 3. Performance Metrics.

ROI-AR ROI-SHR ROI-BHR

BOLD 0.450(60.09) 15.317(64.61) 20.565(67.77)

Theta ERS 0.214(60.03) 9.238(63.06) 8.080(61.31)

Mu ERD 0.341(60.06) 10.045(62.27) 13.150(62.21)

Beta ERD 0.306(60.05) 9.580(61.83) 10.969(62.32)

LG ERS 0.184(60.06) 6.191(63.78) 7.161(62.00)

HG ERS 0.161(60.04) 6.386(62.03) 6.736(62.09)

The threshold for EEG cortical distributions is set 97% at source for each subject. The z score of BOLD activation are calculated using thresholds 2.5 and fraction 25% (see
text for details). Data for these three metrics represent the average across all subjects.
doi:10.1371/journal.pone.0112103.t003
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However, in two sessions, the BOLD response was completely

lacking in primary motor cortex or the peak activity was at some

distance from M1 of the hand region. In those sessions, beta-band

ERD was observable in M1.
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