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Abstract

The trade-off between the need to obtain new knowledge and the need to use that knowledge to improve performance is
one of the most basic trade-offs in nature, and optimal performance usually requires some balance between exploratory
and exploitative behaviors. Researchers in many disciplines have been searching for the optimal solution to this dilemma.
Here we present a novel model in which the exploration strategy itself is dynamic and varies with time in order to optimize
a definite goal, such as the acquisition of energy, money, or prestige. Our model produced four very distinct phases:
Knowledge establishment, Knowledge accumulation, Knowledge maintenance, and Knowledge exploitation, giving rise to a
multidisciplinary framework that applies equally to humans, animals, and organizations. The framework can be used to
explain a multitude of phenomena in various disciplines, such as the movement of animals in novel landscapes, the most
efficient resource allocation for a start-up company, or the effects of old age on knowledge acquisition in humans.
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Introduction

In order to produce high quality science, a scientist needs to be

well versed in theory and familiar with other studies in her or his

field. However, spending too much time delving into other studies

might reduce the time allocated to the scientist’s own research,

reducing the quality of the research’s results. Assuming the

scientist wants to maximize his/her contribution to science, how

much time should he/she spend on acquiring knowledge vs.

putting this knowledge to use?

The trade-off between the exploration of new possibilities and

the exploitation of old certainties constitutes one of the most basic

dilemmas that both individuals and organizations constantly face

at multiple time-scales, and has therefore been investigated by

researchers from a variety of fields, including economics [1–3],

business management [4,5], psychology [6,7], computer sciences

[8] and ecology [9,10]. This dilemma stems from the fact that

gathering information and exploiting it are in many cases two

mutually exclusive activities. These two activities can be viewed as

the two extreme strategies at the ends of a continuous scale. At one

end of the continuum, an individual or system that only explores

(i.e., obtains information about its environment in order to

enhance future performance [11]) will pay the costs of obtaining

new information without gaining the benefits of knowledge [2].

On the other end of the continuum, an individual or system that

only exploits (i.e., uses existing knowledge only) will lack the

capability to adapt to significant environmental changes and may

be trapped in a suboptimal stable equilibrium [2,4]. Thus, optimal

behavior usually requires some balance between exploratory and

exploitative behaviors [2,9,10].

Most of the studies dealing with the exploration-exploitation

tradeoff show optimal solutions that are composed of one or

several stationary strategies [12]. These could be a point on the

exploration-exploitation continuum representing a division of the

subject’s resource allocation between exploratory and exploitative

behaviors that yields the best long-term rewards under given

conditions [13,14], or a point in time in which the subject should

switch from a purely explorative strategy to an exploitative one

[14,15]. A more realistic approach should consider the strategy

itself as a dynamic component that varies with time in order to

optimize a definite goal, such as the acquisition of energy, money,

or prestige. If we take the scientist from the opening example, it is

reasonable to assume that his/her optimal strategy as a graduate

student should differ considerably from his/her optimal strategy

once he/she received tenure. Therefore, a key question is how will

the optimal solution change with time along the different stages of

the scientist’s career? Only very few studies have explored this

optimization problem.

The principles of reinforcement learning (RF) theory, a

framework originally used for machine learning that is aimed at

facilitating adaptation to an environment based on trial and error

[8], were applied in computational biology to construct learning
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algorithms in which an agent can control the balance between

exploration and exploitation in an optimal manner [16–18]. These

algorithms are based on a Bayesian modeling approach where the

agent’s decisions are the product of a weighted average of some

prior knowledge regarding the environment and current sampling

information [19], and the agent’s need to explore is directly based

on its perception of the environment, growing whenever the

environment changes [16]. This is due to the fact that uncertainty

should promote exploration [20] in an attempt to reduce it, and

indeed there is evidence that surprising events and changes to the

environment promote animals to learn faster [21]. Such

algorithms have been tested and found to produce near optimal

results in simulations. Moreover, analogical neurophysiologic

pathways in the brain of animals and humans have been

suggested, highlighting the neurobiological substrates that are

related to the regulation of decision-making [17,18,20]. But

although RF models are very useful in increasing our understand-

ings of how animals and humans make decisions, they are also

very mechanistic in nature and are, in many cases, specifically

tailored to solve certain tasks, such as passing through mazes [16],

with no attention given to the general motivation and ecological

background of the subject. In other words, the abovementioned

models have concentrated on the how rather than on the why of the

decision-making process. Furthermore, so far the conclusions of all

previous investigations of the exploration-exploitation dilemma are

restricted to the discipline in which the study was conducted, and

no attempt has been made to create a unifying framework that

would be applicable across disciplines.

We present a multidisciplinary general framework of the

exploration-exploitation trade-off, motivated by a new mathemat-

ical model, in which the balance between exploring new

possibilities and exploiting old certainties varies dynamically with

time to optimize a predefined goal. In this framework we focus on

the optimal exploration-exploitation strategies at different stages of

a subject’s life-span.

Methods

Our model depicts a subject that can invest in energy

acquisition (exploitation) or knowledge acquisition (exploration),

according to a strategy that represents the proportion of time the

subject invests in knowledge acquisition as a function of time along

its lifetime Tmax. Denoting the subject’s energy and knowledge by

E and L, respectively, and the time dependent strategy by u(t), the

model reads:

dE

dt
~

fmaxL

KLzL
{m{u(t),

dE

dt
~

fmaxL

KLzL
{m{u(t)

According to this model, energy E is gained as a saturating

function of the existing knowledge L, with the half saturation

constant kL, so that an increase in knowledge yields a smaller

increase in energy gain when existing knowledge is higher. The

constant kL can also represent spatial unpredictability – a low value

of kL reflects a homogeneous environment in which a low amount

of exploration is all the subject requires in order to gain benefits

from it, while a high value of kL represent a heterogeneous

environment. Energy is lost due to maintenance costs at a constant

rate m, and also due to knowledge acquisition at a rate

proportional to the strategy u(t). Knowledge gain is proportional

to u(t), with efficiency a, and knowledge loss due to maintenance

costs is proportional to the existing amount of knowledge with a

rate mL. A high value of mL (i.e., a high rate of knowledge loss or

‘‘forgetting’’) can represent low temporal predictability in the

environment or, alternatively, the subject’s limited ability to retain

stored knowledge. To obtain physically feasible results, we must

also add constraints requiring that energy will not become lower

than some minimal level needed for survival (Emin), and also

enforcing positive values of knowledge throughout the simulation:

E(t)§Emin

L(t)§0

We also require the strategy u(t) to be limited by the following

constraints: Energy expenditure for exploration, per unit time,

cannot have a negative value and should be smaller than the

maximal energy acquisition rate fmax.

0ƒu(t)ƒfmax

Table 1 lists the different parameters used in the model, the

range of values which we investigated for each parameter, their

units, their meaning, and the initial conditions and constraints of

the model.

Each strategy, u(t), correspond uniquely to a value of energy at

the end of life, Ei(Tmax).

We define the optimal strategy u*(t) to be the strategy that

maximizes the amount of energy at the end of the subject’s life-

span, Tmax. This does not mean that the subject ends its life with

stores of wasted energy, since this energy is presumably used

during its life-span to produce offspring, increase the subject’s

material wealth, etc. In order to find such optimal strategy one can

transform the optimization problem above to a set of differential

equations. The rules to make this transformation were formalized

by Lev Pontryagin and Richard Bellman, and are now widely

known as Optimal Control Theory [22]. The differential

equations obtained by this method are often quite complicated

to solve analytically and may require the use of numerical solution

methods. In this work we use an optimization problem solving

code for MATLAB (version 7.6.0, MathWorks, Natick, Massa-

chusetts) called ‘‘General Pseudospectral Optimization Software (GPOPS)’’

available freely online [23]. This code transforms the model,

constraints, and optimization criteria using the optimal control

scheme into a set of partial differential equations, and proceeds to

solve these equations using a numerical pseudospectral method.

The solution yields the optimal strategy u*(t) that corresponds to

the maximal energy gain during lifetime. We used this method

iteratively to explore how changing model parameters affect the

optimal strategy.

As in all models, we make several simplifying assumptions in the

construction of this model. We assume that all parameters remain

constant throughout a subject’s life-span, as well as the value of

information. We also assume that the rate of learning is reduced

with the accumulation of knowledge. We believe that while these

assumptions imply that the model may not apply to some specific

cases, they also keep the model general enough to be applicative

across disciplines.

Exploration-Exploitation Framework
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Results and Discussion

The model results were very robust, and remarkably produced

only four distinct phases that emerged in a fixed order regardless of

the parameter values that were assigned. The phases differed in

the subject’s relation to knowledge (Fig. 1) and can be defined as:

1. Knowledge establishment. 2. Knowledge accumulation. 3.

Knowledge maintenance. 4. Knowledge exploitation. Each of

these phases relates to a different stage in the life-span of the

decision making subject, be it a foraging animal, a human or a

company. The framework is relevant across disciplines and can be

used to explain a multitude of phenomena and allow for better

informed decision making.

The Four Knowledge Phases

Knowledge Establishment
In order to exploit any resource, even in the most inefficient

manner, the exploiting entity must have some knowledge of its

environment. At the very least, knowledge of the existence of a

resource and how to reach it are needed. The more is known

about alternative resources, ways of obtaining them and various

aspects of the environment, the more efficient the exploitation of

resources will be. Thus, knowledge establishment is an obligatory phase

when entering unfamiliar territory, such as for a dispersing or

translocated animal, or an emerging company.

During this phase the subject devotes all of its resources to

exploration (Fig. 1). Since the subject does not exploit any

resources, it relies solely on its internal reserves (i.e., the energy

state of an exploring animal or investors’ funds in an emerging

company). Consequently, the length of this phase is mainly

determined by the subject’s initial state. A subject that is in a

relatively good state can afford to extend this phase considerably,

thus improving its future prospects.

It is important to note that both humans and animals frequently

use inherited knowledge (that was passed to them genetically or

through culture transmission) when entering an unfamiliar

territory, and thus may act upon some prior expectations based

on that knowledge. If this knowledge is reliable, these individuals

may skip this phase entirely and start their life from the knowledge

accumulation phase. However, inherited knowledge may some-

times hinder the utilization of resources [24], such as in the case of

rapidly changing environments, in which case individuals may be

left with diminished resources for the establishment phase.

This phase is commonly apparent in technological ventures

where in the early stages of a development project, an exploratory

search should be undertaken in an attempt to discover something

new, as well as to form exploration alliances [5,25]. In the context

of animals, this phase exists in dispersing individuals that have

reached unfamiliar territories. It is usually very short, and thus

there is very little empirical work investigating it in the wild.

However, we do know that captive animals that are introduced to

new environments exhibit specific behaviors aimed at exploring

their new environment [26,27]. The rapid integration of high

resolution GPS collars into wildlife reintroductions [28] promises

exciting advances in this field, as we now have the means to

investigate the movement behavior of animals that are released to

novel environments to better understand the knowledge establish-

ment phase.

Knowledge Accumulation
This phase is what most literature dealing with the exploration-

exploitation trade-off refers to as the exploration stage. During this

phase the subject focuses on obtaining new information while

exploiting resources from existing knowledge at a low rate aimed

only at keeping the subject at some minimal pre-defined state.

Thus, the subject is sacrificing its short-term benefits in order to

obtain long-term rewards. As this phase progresses the rate of

obtaining new information increases slowly because with the

accumulation of knowledge, the exploitation of existing resources

becomes more efficient and the subject needs to devote less time

and energy to reach its minimum pre-defined state, and can

Table 1. The different parameters that were used in the model and the range of parameter values we investigated (A), and the
parameters that were used in solving the optimization problem (B).

A. Model Parameters

Parameter name Values Units Meaning

fmax [0.5–10] E/t Maximal energy consumption rate

kL [0.001–10] L Efficiency of foraging: The level of knowledge that will yield half of the maximal consumption rate.

m 0.02 E/t Maintenance cost of living

a [0.5–10] L/E Efficiency of learning: Knowledge gain per unit energy.

mL [0.01–1] 1/t Knowledge maintenance cost (temporal predictability)

Tmax [5–100] T Life duration

B. Optimization problem parameters

Parameter name Values Units Meaning

E(t = 0) 5.5 E Initial energy

L(t = 0) 0 L Initial knowledge

Emin 5 E Minimal energy for survival

Lmin 0 L Minimal knowledge

Umin 0 E/t Minimal investment in learning

Umax 1 E/t Maximal investment in learning

doi:10.1371/journal.pone.0095693.t001
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therefore allocate more time and energy for further exploration

(Fig. 1).

Since exploratory behavior is such a fundamental behavior in

both humans and animals [29], there have been many attempts to

describe and characterize the behavior of individuals in novel

environments. Some of the more in-depth studies of exploratory

behavior have been done on rodents, but even within these studies,

exploratory behavior varies according to the species and context.

Laboratory mice introduced to a novel arena, showed exploratory

behavior of increasing complexity, first examining their nest’s

surroundings, then progressively the walls around the arena and

only later venturing to the center of the arena [29]. A similar

behavior was performed by fat sand rats, Psammomys obesus, under

lit conditions, but in the dark the rats performed looping behavior,

in which travel paths tangle into loops [26]. Outside the

laboratory, brown rats, Rattus norvegicus, released into the wild,

exhibited random walk patterns, increasing in perimeter with time

and mediated by central place foraging behavior [30]. Whatever

the exploration method is, in all of these cases the behavior of the

animals is clearly primarily aimed at increasing their knowledge

about their surroundings and not at the acquisition of resources.

Thus, all of these different exploration mechanisms ultimately

represent the same phase – knowledge accumulation.

The subject’s time horizon (Tmax) is an important factor

determining the length of this phase. Because there is a temporal

gap between paying the short-term costs of accumulating

knowledge (i.e., exploring) and reaping the benefits of information,

subjects with short life-spans should invest less in accumulating

knowledge, since for them the benefits of knowing more are greatly

reduced. Indeed, numerous studies on humans and animals report

that as the relevant time horizon decreases, so does the tendency of

the subject to explore [9,18,31]. A limited time horizon can stem

from the time left available for a specific task [32] or the age of the

subject [33]. Increasing the time-span of a learning subject will

lengthen the knowledge accumulation period, but only up to a certain

value. Because of cognitive or physiological constraints, as well as

environmental stochasticity (that in most cases cannot be fully

predicted), there is a limit to the benefits of exploration. Thus,

eventually the exploring subject reaches a point in which

additional exploration does not improve its future prospects and

Figure 1. The four knowledge phases. The change with time in the subject’s energy state (E; panel A, solid blue line), knowledge state (L; panel A,
dashed green line), and its optimal proportion of time devoted to knowledge acquisition (u*(t); panel B, solid red line). The vertical dashed lines make
a distinction between the four life-phases with regards to the exploration-exploitation dilemma: a. Knowledge establishment. b. Knowledge
accumulation. c. Knowledge maintenance. d. Knowledge exploitation. The parameters used to generate this example are: fmax = 1, kL = 1, mL = 0.08,
alpha = 1 and Tmax = 20.
doi:10.1371/journal.pone.0095693.g001
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this phase becomes constant (decreasing the relative weight of this

phase as the subject’s life-span increases, Fig. 2a).

The environment’s temporal unpredictability (mL), which can

reflect either external conditions that change with time (such as a

highly fluid market environment), or the subject’s own cognitive

abilities and liabilities (such as memory capacity or decay), will also

determine the length of the knowledge accumulation period. The

more unpredictable the environment is, the harder it is to make

predictions about the future state of the environment, which

lowers the value of exploration (Fig. 2b). This result is supported

by both theoretical models of learning in stochastic environments

and empirical studies with humans [20,34,35].

As the spatial unpredictability (kL) of the environment decreases

(i.e., as the environment becomes more homogeneous) the need for

exploration is reduced, and in extremely predictable conditions the

knowledge gained during the knowledge establishment period is

sufficient for optimal exploitation, eliminating the knowledge

accumulation phase (Fig. 2c). Lastly, the learning efficiency (a) of

the subject will determine the length of the knowledge accumulation

period. An extremely efficient learner already accumulates enough

knowledge during the knowledge establishment period, and can

skip the accumulation stage altogether. In contrast, for an

inefficient learner the accumulation period is greatly extended to

allow for the accumulation of sufficient information for optimal

exploitation of resources at a later stage (Fig. 2d).

Knowledge Maintenance
In this phase the subject focuses on the utilization of resources

while maintaining its knowledge at a constant optimal level. i.e.,

learning is only used to replace lost information or update existing

knowledge. The leveling of the knowledge curve (Fig. 1) represents

an optimal level of knowledge. Obtaining additional knowledge is

too costly (because of the saturating shape of the energy gain

function) when weighted against the benefits of knowledge and the

rate of knowledge loss (mL).

For animals foraging in heterogeneous landscapes with renew-

able resources, trap-lining, defined as repeated visitation to a series

of resource patches in a predictable order, is usually the most

beneficial foraging strategy [36], and has been reported for a wide

variety of species [37–39]. Trap-lining foragers utilize resources

Figure 2. The optimal knowledge phases as a function of age and environment. The four optimal knowledge phases (dark blue -
knowledge establishment, light blue - knowledge accumulation, orange - knowledge maintenance, red - knowledge exploitation) as a function of the
subject ‘age’ (i.e., its position on its life-span trajectory, normalized here to a scale of 0–1), and different parameter values: (A) Tmax - length of life-
span. (B) mL - rate of knowledge loss. (C) kL - learning half saturation constant representing the environmental spatial predictability. (D) alpha -
learning efficiency. In all simulations, the values of all parameters not tested (e.g., for plate A - all parameters but Tmax) are as described for figure 1.
doi:10.1371/journal.pone.0095693.g002
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based on existing knowledge, but since the environment is

constantly changing, some method of updating the forager’s

information regarding its environment is needed for it to avoid

getting ‘stuck’ in an inefficient foraging route. Indeed, several

cognitive mechanisms for updating trap-lines have been suggested

[10,36]. One suggested mechanism that can control both this

phase as well as the knowledge accumulation phase is the adding of a

(usually positive) bias to the subject’s estimation of its environment

when it encounters a novel environment (or alternatively, the

adding of stochastic variability to its estimate). This idea originates

from the field of RL and machine learning [8,40], but has lately

been expanded to explain animal behavior [10,41]. A positively

biased estimation of the environment encourages exploration by

motivating the subject to keep looking for better rewards. As the

subject explores, it constantly updates it estimate of the environ-

ment reducing its initial bias. Thus, the longer it explores, the

more realistic this estimation will become, until eventually the

subject will cease exploration and move into the knowledge

maintenance phase. The same mechanism will also ensure that the

subject maintains its knowledge in the maintenance phase. Either

that stochastic error in the subject’s learning mechanism will keep

him exploring to some degree throughout this phase, or

alternatively, in the case of an initially biased estimation, whenever

the subject encounters a lower than usual reward, as a result of

some degradation in the quality of the familiar environment, it will

again possess an estimate that is higher than the rewards it

acquires, which will send him exploring for a better alternative.

In business management, during the knowledge maintenance phase,

knowledge regarding existing products is used and maintained, but

new lines of products are not pursued [2,14]. The maintenance of

knowledge is essential to effectively manage the inevitable errors

and changes that are associated with knowledge storage bases, and

is therefore considered an essential element of knowledge

management [42].

Just as in the knowledge accumulation phase, a short time horizon

will reduce the length of the knowledge maintenance phase, or even

eliminate it altogether (Fig. 2a). When the subject’s time-span is

very short, it will be sub-optimal to spend any time learning new

information, even if only to maintain the subject’s current

knowledge. However, unlike the knowledge accumulation phase, as

the time-span of the subject expands so does the amount of time

devoted to knowledge maintenance. During this phase the subject reaps

the rewards of past explorations, and thus the longer this period

lasts, the more the subject gains.

This phase is strongly affected by the environment’s temporal

unpredictability. In an environment that is predictable (as a result

of stable conditions and low memory decay of the subject) this

phase diminishes as the knowledge that was acquired earlier does

not need maintaining and the subject should focus only on

exploiting it. On the other hand, in a very fluid (and hence,

unpredictable) environment, this phase replaces the knowledge

accumulation phase simply because there is no point in accumulating

knowledge for future use in a constantly changing environment

and the subject should focus on continuous learning while

exploiting resources (Fig. 2b). The learning efficiency of the

subject produces a similar trend - when it is very low, there is no

use in trying to maintain knowledge, since the benefits of investing

only partial efforts in learning are close to nil. In this case the

subject should concentrate only on the exploitation of knowledge

once its knowledge accumulation phase is over. When the learning

efficiency is especially high the amount of resources devoted to

learning during this phase can be maintained at a very low level,

and it can replace much of the knowledge accumulation phase (Fig. 2d).

Knowledge Exploitation
This phase arrives towards the end of a subject’s life-span, and is

characterized by a learning investment of 0. As the end

approaches, it is sub-optimal to continue investing in gaining

new information and the subject should invest its time only in

exploiting the knowledge it had already accumulated, temporarily

increasing its intake rate of resources (Fig. 1). It is worthwhile to

note that in most cases a subject will have no prior information on

its expected life-span. However, there are usually detectable cues

that can inform the subject it is approaching the end of its life.

We do not presume to suggest a mechanistic explanation to the

effects of old age on learning performance. However, from an

evolutionary perspective, our framework corresponds to several of

the main paradigms of the psychology of human aging. It is

common knowledge that the processing of information and

memory in humans decay in old age [43]. Moreover, in respect

to reading, older subjects show a substantial decline in their

working memory, but an increase in their use of prior knowledge

[44]. Three processing styles have been identified in relation to age

[45]: The ‘youthful’ style focuses on learning, intense data

gathering and bottom-up processing. The ‘mature’ style balances

the use of relevant knowledge and information seeking, and the

‘old’ style relies on top-down processing, making use of existing

knowledge. This notion that aging is accompanied by an increase

in top-down processes pervades recent literature on language in

old age [46,47].

Another popular theory that supports our framework is the

Socioemotional Selectivity Theory [31,48,49]. The theory pro-

poses two primary motivations for social interactions: emotion

regulation and knowledge acquisition. The perceived time-span of

an individual determines the relative importance of these

motivational objectives. A long time-horizon tends to be related

to knowledge acquisition goals, while a limited time-horizon tends

to be related to emotion regulation goals. Because of their limited

future time extension, older adults are assumed to be less

motivated to acquire knowledge. The theory has received

empirical support in a variety of studies [50,51]. While this can

also be explained by the biological fact that the cognitive abilities

in humans decay in older people, empirical evidence demonstrates

that young people with a limited time horizon (such as terminally

ill patients) show similar tendencies to forgo knowledge acquisition

[51,52].

It is interesting to note that for very short Tmax only two phases

emerge - knowledge acquisition and knowledge exploitation.

Animals with very short life-spans are usually also very small (as

they do not have the time to invest in a large body). Small size and

a short life-span may promote a more homogeneous environment

in space and time (e.g., the animal only lives through one season

and forages in a single habitat), which means that there is no need

to maintain the knowledge and once enough knowledge is

acquired, the animal can immediately switch to the exploitation

of resources with no further investment in learning. As lifetime

increases, animals need to deal with a more complex environment

(more seasons, more habitats), and thus knowledge accumulation

and maintenance stages are added to their life-time strategy.

Conclusions

We provide a unifying framework of the exploration-exploita-

tion trade-off, a trade-off prevalent in many disciplines and

situations. It is important to note that the timeline presented in our

model is restricted to monotonic linear time changes (e.g. lifetime

of a human; lifetime of an economical project). However, the

model could be easily extended to account for non-linear time-

Exploration-Exploitation Framework
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frames. For example, a major change to the environment (e.g., a

flood that changes the entire topography, or an economical crisis

that changes the entire economical landscape) can force a subject

to revert from the knowledge maintenance or even the knowledge

exploitation phases back to the knowledge accumulation or knowledge

establishment phases. Similarly, there can be cases in which the

entire sequence of 4 phases can occur multiple times within a

subject’s life-span, such as in the case of animals that disperse to

new areas several times during their lifetime. In such cases, the

length of each sequence can change with time and ‘dispersal

experience’, i.e., the explorative phases of an animal dispersing for

the first time may be considerably longer than for an animal

dispersing to an unfamiliar area for the fifth time in its life.

Our framework demonstrates that the optimal solution to the

exploration - exploitation trade-off depends on the life-stage of the

subject as well as on the environmental conditions, and that the

same strategies can be used by a variety of subjects - animals,

humans and organizations alike. This fact points to the universality

of the exploration-exploitation dilemma and the strategies aimed

at solving it. Thus, the proposed framework can improve our

understanding and consequently, our decision making in a

multitude of disciplines.
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