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Abstract

Genetic circuits can implement elaborated tasks of amplitude or frequency signal detection. What type of constraints could
circuits experience in the performance of these tasks, and how are they affected by molecular noise? Here, we consider a
simple detection process–a signal acting on a two-component module–to analyze these issues. We show that the presence
of a feedback interaction in the detection module imposes a trade-off on amplitude and frequency detection, whose
intensity depends on feedback strength. A direct interaction between the signal and the output species, in a type of feed-
forward loop architecture, greatly modifies these trade-offs. Indeed, we observe that coherent feed-forward loops can act
simultaneously as good frequency and amplitude noise-tolerant detectors. Alternatively, incoherent feed-forward loop
structures can work as high-pass filters improving high frequency detection, and reaching noise tolerance by means of noise
filtering. Analysis of experimental data from several specific coherent and incoherent feed-forward loops shows that these
properties can be realized in a natural context. Overall, our results emphasize the limits imposed by circuit structure on its
characteristic stimulus response, the functional plasticity of coherent feed-forward loops, and the seemingly paradoxical
advantage of improving signal detection with noisy circuit components.
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Introduction

Signal transduction networks are commonly constituted by

genetic circuits, or modules, comprised of a small number of

interacting molecular elements. Recent accounts of how these

modules compute biochemical information highlighted the

intricate relationship between structure and function, and the

capacity of these units to process different signal attributes (e.g.,

signal amplitude or frequency) [1–6].

This capacity is particularly relevant for cellular action. For

instance, as part of the mating pheromone response, yeast uses a

mitogen activated protein kinase (MAPK) module to sense

different amplitudes of a signal, i.e., pheromone levels, in order

to execute alternative developmental decisions [5]. The frequency

of an oscillatory stimulus, such as the tumor necrosis factor-a
(TNFa) cytokine in inflamattory tissues [3], can equally play a

fundamental role. The frequency of the TNFa oscillation is read

by the nuclear factor kB signalling module, with different

frequencies resulting in changes in timing and specificity in the

transcriptional activation of downstream genes [6].

In fact, the relevance of oscillatory stimuli (and response

oscillatory codes) to understand signaling systems is increasingly

being appreciated. Oscillatory inputs can be used to probe and

characterize genetic networks offering several advantages: the

response may be easier to discriminate from noise than by applying

a step stimulus [7], and systems identification theory [8] can be

employed to validate molecular models of the network under study

[9–12]. Alternatively, oscillations in protein abundance [2,13], or

protein localization [14], can act as a robust strategy to encode

regulatory information, similar to the neural spiking codes.

Here, we study the response to an input signal (I) of a minimal

genetic module –constituted by a sensor (S) and output (O)

component (Figure 1A). We analyze the type of constraints that

limit this unit to act as a multi-functional noise-tolerant sensing

device (capable to read different attributes of a signal in the

presence of biochemical noise [15]). Specifically, we ask which

modules are more appropiate to process a particular signal feature,

how these tasks are affected by noise, and which class(es) of circuits

could then be functioning in a noise-tolerant manner.

To this aim, we used a unified theoretical description in terms of

strength of interactions within module components (formally

quantified as the gains or susceptibilities), and characteristic time

scales (e.g., degradation rates) [16,17]. Within a linear approxi-

mation for the dynamics, both the deterministic and stochastic

response can be analyzed in terms of these quantities for static

(long duration) and oscillatory signals. Our theoretical results are

validated by numerical simulations of different detection modules,

and the analysis of experimental data which suggests that gene

circuits could exploit the properties discussed here under

physiological stimulus conditions. As a whole, this study has

implications for the design of synthetic circuits and the reverse

engineering of natural ones.

PLoS ONE | www.plosone.org 1 August 2010 | Volume 5 | Issue 8 | e12314



Results

A framework to analyse amplitude and frequency
detection in noiseless two-component circuits

The general three-node networks studied here are diagrammed in

Figure 1A. All kind of interactions are allowed between sensor and

output species (autoregulations are not shown for simplicity), and the

input signal can act on both components, but there is no feedback to

the input [18]. Interactions are characterized by their sign and strength,

that we quantified with pairwise susceptibilities, sij, between network

elements (defined below, see also Text S1 for details and derivations).

A genetic module works as a sensible detection device when

it is capable of obtaining accurate information on changes of

amplitude, aI, or frequency, vI, of the input signal, as

schematically shown in Figs. 1B,C. To make this definition more

quantitative, we employed two detection scores:

We used the output susceptibility, sO, to estimate the potential of the

module to detect amplitude variation (Figure 1B and Figure S1A)

[16–18]. This measure quantifies the relative change in the output

species at equilibrium, nO, as the input signal changes –thus, the

larger sO, the better the detection–, and depends on the pairwise

susceptibilities between module components (Figure 1A) as

sO~
�nnI

�nnO

d�nnO

d�nnI
~

sOIzsOSsSI

1{sOSsSO
: ð1Þ

Pairwise susceptibilities are expressed in terms of logarithmic gains

or elasticities, i.e., sij~{Hij=Hii, where Hij measures how the

production/degradation balance of the ith component is affected by

changes in the jth one [17,19].

To estimate frequency detection abilities, we considered a sinusoidal

signal with amplitude aI and frequency vI impinging on the module

(Figure 1C). This signal takes the output from its initial equilibrium

state (�nnO) to an oscillating one [nO(t)] whose amplitude and phase-lag

depend on the input frequency. A plausible measure of frequency

detection is given by the range of frequencies vI at which the

amplitude of the oscillations are still distinguishable from the average

equilibrium value, as usually quantified by the output bandwidth, vBW.

To formalize this idea, we first introduced the relative amplitude of the

oscillatory output, i.e., A(vI):
max nO(t)½ �{�nnO

�nnO
, and derived a linear

approximation expression around �nnO as (Text S1)

A2(vI)~
a2

I

t2
I v2

I z
H2

II

t2
I

� � s2
OJac2zs2

OIv
2
I H2

OO=t2
O

D(vI)
, ð2Þ

where Jac is the Jacobian determinant associated to local stability

analysis of the steady state equilibrium, and D(v) is defined by

D(vI): v2
I z

H2
SS

t2
S

� �
v2

I z
H2

OO

t2
O

� �

z2sSOsOS
HSS

tS

HOO

tO
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I za
� �

:

ð3Þ

Here, the corresponding elasticities are denoted by the H ’s, t’s are the

decay rates of the molecular species, and a:
sSOsOS

2
{1

� �HSS

tS

HOO

tO
.

Eq. (2) shows that the relative amplitude is the product of a low-pass

filter induced by the signal –with bandwidth HII=tI– times a second

term dependent on susceptibilities and intrinsic time-scales of the

module components. We numerically verified that this expression

works well for oscillatory signals changing up to 50% the equilibrium

value, Figure S1B. A measure of frequency detection is then given by

the bandwidth of A2(vI), i.e., the range of frequencies where the

amplitude of oscillations are above half its maximum value [8]. The

larger vBW, the more frequencies can be transmitted.

Simple trade-offs emerge in noiseless signal detection
How does the specific module structure and biochemical

parameters influence detection? The linear cascade, the simplest

Figure 1. General scheme of signal detection by two-component modules. A. Illustration of the basic signal detection circuit studied. An
input molecular species, I, acts as a biochemical signal on a minimal detection module (grey box) constituted by a sensor, S, and an output species, O.
Lines indicate feasible interactions, either activation or inhibition, characterized by pairwise susceptibilities sij (autoregulations were also considered
but not depicted for the sake of clarity). B. Signal amplitude detection: A sudden change in input (step signal) produces an amplitude change in the
output concentration nO determined by the total output susceptibility sO. (C) Signal frequency detection: An oscillatory input signal of frequency vI

produces an oscillatory change in the output around the equilibrium value �nnO, characterized by the relative amplitude A(vI).
doi:10.1371/journal.pone.0012314.g001
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module in our general scheme, appears as a natural starting point

to understand this issue. The output susceptibility is readily given

in this case by the product of the corresponding pairwise

susceptibilities (sO~sOSsSI), and the amplitude of the output to a

sinusoidal signal by

A2(vI)~
a2

I

t2
I v2

I z
H2

II

t2
I

 ! s2
OJac2

v2
I z

H2
SS

t2
S

 !
v2

I z
H2

OO

t2
O

 ! , ð4Þ

i.e., the product of three low-pass filters, whose bandwidths are

given uniquely by the lifetimes of each component.

Since bandwidth does not depend on susceptibilities, frequency

detection can be adjusted independently of amplitude detection.

Indeed, sO could be tuned to increase/decrease amplitude

detection –by modifying pairwise susceptibilities –independent of

lifetimes. It also became clear in this framework that the slowest

time scale of the system determines its bandwidth (Figure S2A) [9],

and that bandwidth is reduced by adding successive components

to the cascade (Figure S2B). This implies that longer cascades

buffer more efficiently transient stimuli, as it was recently tested in

a synthetic genetic cascade [20].

More complex architectures are those showing feedback of the

output component into the sensor species, i.e., sSO=0. The output

susceptibility reads then

sO~
sOSsSI

1{sOSsSO
, ð5Þ

with a negative (positive) feedback fulfilling sOSsSOv0 (w0).

Additionally, the oscillatory output amplitude is similar to the

linear cascade except for the second adding in D(vI), see Eqs.

(2,3). For fixed degradation rates and no autoregulation of the

module components (HSS~HOO~1), this term depends only on

the product sOSsSO, which we denoted as feedback strength (FS).

We used the previous analytic expressions to study detection in a

collection of feedback modules with different biochemical param-

eters. To specifically characterize the role of FS, we fixed in this

analysis both the input-sensor interaction (sSI) and the module time-

scales (tI~tS~tO~1), while allowing the feedback susceptibilities

(sOS and sSO) to vary within a range ½smin, smax� [18]: FSs are

found in this way in the interval ½smin2, smax2� (positive feedback

fulfilled FSv1 for the output steady state to be stable).

In Figs. 2A–D, we plotted simultaneously bandwidth (frequency

detection) and output susceptibility (amplitude detection) as a

function of FS for negative and positive feedback, respectively –

with FS = 0 corresponding to the linear cascade. Note that there

Figure 2. Amplitude/frequency detection in feedback circuits. Frequency detection (bandwidth vBW , panels A, B) and amplitude detection
(output susceptibility sO, panels C, D) versus feedback strength FS for negative (left) and positive (right) feedback modules. The input/sensor
susceptibility is fixed (sSI~2) while the other pairwise susceptibilities change in the interval ½0, 5�. Time-scales are tI~tS~tO:t~1. For each value
of FS there corresponds a unique value of vBW (black solid line in Figure 2 A,B) but a range of sO ’s (shaded region between red solid lines in
Figure 2C,D). (E) Blue solid line: Input signal at two different frequencies, v = 0.3 and v = 1.5 t{1 , for a negative feedback circuit at FS = 6 and sO*1:42
(black circle in Figure 2C). Black line: Output response. Blue and black dashed lines: signal pulse of the same amplitude as the oscillatory one, and the
corresponding output response, respectively. (F) Response of a positive feedback circuit with FS = 0.5 and sO~8 (black circle in Figure 2D) under the
same signal and initial conditions.
doi:10.1371/journal.pone.0012314.g002
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exists a one-to-one correspondence between FS and vBW (black

solid line in Figs. 2A,B) but a one-to-many for sO (shaded region in

Figs. 2C,D). The same frequency detection can thus be achieved

with different combinations of pairwise susceptibilities sOS and sSO,

giving different sO in Eq. (5). The maximum and minimum values

for sO at each FS are plotted with red lines in Figs. 2C,D (specific

limits given in Table S1). For positive feedback an increase in FS –

producing a larger output susceptibility– entails a decrease in

bandwidth, while for negative feedback the behavior is the

opposite. This pattern clearly links FS –one fundamental design

feature of architectures with feedback– with a trade-off between

amplitude and frequency detection. This very same behavior is

also observed in linear cascades with autoregulated components,

as a function of autoregulation strength (Figure S3 and Table S1).

To further illustrate these trade-offs, we showed the dynamical

response of each module to step and oscillatory input signals

(Figures 2E–F, we used differential equations models of genetic

circuits, Text S1 for details). We picked out intermediate FS values

for both architectures (black circles in Figures 2C,D) and two

different oscillation frequencies. We corroborated the analytical

predictions of Figures 2A,B: for negative feedback the input signal

induced a response of low amplitude but the oscillations were

faithfully transmitted at high frequencies (Figure 2E). The positive

feedback produced, on the other hand, a high amplitude response,

but oscillations were poorly transmitted at high frequencies

(Figure 2F).

Feed–forward loops are flexible amplitude/frequency
detectors

The presence of a direct interaction between input and output

strongly modifies the detection characteristics just discussed. The

best known architecture of this type, with sOI=0, is of course the

feed-forward loop (FFL) network motif [21]. Global susceptibility of

the FFL module is a sum of direct and transmitted susceptibilities

sO~sOIzsOSsSI, ð6Þ

and the amplitude of the oscillatory response is expressed from Eq.

(2) as

A2(vI)~
a2

I s2
OJac2za2

I s2
OIv

2
I H2

OO=t2
O

t2
I v2

I z
H2

II

t2
I

 !
v2

I z
H2

SS

t2
S

� �
v2

I z
H2

OO

t2
O

� � : ð7Þ

The first term in this sum (*s2
O) gives a low-pass filter identical to

the linear cascade [Eq. (4)], while the second term (*s2
OIv

2)

corresponds to a high-pass filter, produced by the direct action of

the signal on the output. Frequency detection implies in this manner

a competition between low- and high-pass filtering modes.

Can we identify a single design attribute, like FS before, that

allows a controlled comparison between FFL modules? We

selected relative strength (RS; RS:DsOID=DsOD) to be such determinant,

since frequency detection behavior depends uniquely on this ratio.

We started analyzing the most commonly found FFL motif, with

all interactions/susceptibilities being positive [21]. In this case

sO§sOI and low-pass filtering dominates. However, the high-pass

contribution slightly enhances frequency detection with respect to

the linear cascade (RS = 0). Thus, we observed a range of RS

where amplitude detection increases above the maximum

susceptibility exhibited in the linear cascade, due to the extra

feed-forward connection, while frequency detection still improved

(Figure 3A,C). This lack of trade-off when increasing amplitude

detection contrasts to the positive feedback module architecture.

We additionally exemplified this difference by computing the

response dynamics of both circuits to an oscillatory input. In

Figure 3E, we plotted the response of a coherent FFL (grey line)

and a positive feedback (red line) to slow and fast oscillatory inputs

(blue line). For slow oscillations, the amplitude of the oscillatory

response appeared the same, since both architectures had

equivalent total susceptibility. Faster oscillations were however

better transmitted by the coherent FFL. Indeed, when we scanned

for all possible modules able to outperform the linear cascade

detection in amplitude and frequency simultaneously, we found

that the coherent FFL was the only statistically significant motif

(Figure S7A).

We next considered an incoherent FFL in which the feed-

forward interaction is negative, whereas both sOS and sSI are

positive [21]. The negative interaction reduced output suscepti-

bility, Figure 3D, similar to the negative feedback module. In the

same way, smaller sO’s implied larger bandwidth since the high-

pass filter term became now more important. In the limit when the

feed-forward arm was much stronger -in absolute value- than the

indirect one (s2
O%s2

OI), the incoherent FFL behaved as a band-pass

filter (shaded region in Figure 3B, see also Figure S4), improving

high frequency detection. To confirm this behavior, and also stress

the differences with the negative feedback architecture, we plotted

in Figure 3F the output trajectories of an incoherent FFL module

(grey line) and a negative feedback module (red line) at the same

susceptibility, with an oscillatory input (blue line). Here

FS = RS = 6, so the incoherent FFL is in the high-pass filter

regime (Figure 3B). While the response at slow frequencies is

slightly better in the negative feedback, at high frequencies the

incoherent FFL transmits oscillations with higher amplitude.

In sum, a FFL architecture achieves a flexible modulation of

their detection properties by tuning the direct input-output

interaction independently of the indirect ones.

A framework to analyse amplitude and frequency
detection in noisy two-component circuits

A framework of noiseless signal detection does not always

properly describe cellular information processing. The inherent

stochasticity of biochemical reactions within cells [15] and signal

intrinsic fluctuations (Figure 4A,B, left) may ultimately blur

detection, mixing signal attributes with intrinsic and propagated

fluctuations. This situation suggests the need for new measures to

quantify sensible detection. We used signal-to-noise ratios (SNRs),

broadly defined as the ratio between the intensity of output

response over the noise (Text S1).

For amplitude detection, the SNR can be expressed as

SNRamp~
sO

sO
, ð8Þ

where sO is the total output susceptibility (previously defined), and

sO is the noise coefficient of variation (standard deviation of the

fluctuations over the mean). This SNR reflects how detection of

amplitude change may be corrupted by the relative output

fluctuations (Figure 4A, middle, and Figure S5A).

For oscillatory signals, Figure 4B, output oscillations could of

course be masked by fluctuations of large amplitude [22] but,

more likely, detection will be limited by the frequency of output

noise. The frequency content of the fluctuations in abundance

around a mean value is given by its power spectrum denoted as

Pfluc(v) (Figure 4A, right). Analogously, for an oscillatory output

(Figure 4B, middle) its total power spectrum, P(v), can be

decomposed into a noisy background (red line in Figure 4B, left)

Trade-offs in Signal Detection
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and an oscillatory component at the input frequency (the peak in

Figure 4B, right) [23]. The height of the oscillatory component is

proportional to the amplitude of the output oscillations (Text S1).

We characterized the SNR for frequency detection as the ratio

of average signal power to average noise power, both at the input

frequency, which can be expressed as

SNRfreq(vI)!
A2(vI)

Pfluc(vI)
: ð9Þ

where A2(vI) is the (relative) amplitude of the output oscillations

at the input frequency, given by Eq. (2) within the linear

approximation, and Pfluc(vI) the power spectrum of the (relative)

output fluctuations around the mean value.

Finally, we described both sO and Pfluc(v) in terms of the same

biological parameters used for the deterministic scores, i.e.

susceptibilities, elasticities and degradation rates. This can be

done using again linear approximations, leading to a fluctuation-

dissipation theorem (FDT) for the covariance of the amplitude

fluctuations [16,18,19]. The output noise amplitude around its

equilibrium value can be decomposed in a sum of three

contributions,

s2
O~s2

OOzs2
OSzs2

OI, ð10Þ

where s2
OK depends upon the intrinsic noise amplitude of species

K corrected by the interactions with the other species (Text S1 for

detailed expressions and further discussion).

Moreover, Pfluc(v) can be readily obtained from the FDT in the

frequency domain, and also contains three contributions (Text S1),

Pfluc(v)~DOO
v2zH2

SS=t2
S

D(v)
zDSS

s2
OSH2

OO=t2
O

D(v)

z
DII

v2z
H2

II

t2
I

� � s2
OJac2zs2

OIv
2H2

OO=t2
O

D(v)
:
ð11Þ

Each term in this sum depends on the noise strengths of its

corresponding species (or diffusion coefficients DII, DSS and DOO,

respectively, the rest of notation as before). The first two terms

represent the contribution to the fluctuation spectrum of the

intrinsic noise of output and sensor species –corrected by their

feedback interactions. We denote this sum as module noise. The

third term, the contribution of signal noise propagated through the

network, is formally equivalent to the amplitude response to an

oscillatory input, i.e., Eq. (2), since in the linear perturbation

regime response is solely determined by intrinsic circuit features

and the amplitude of the perturbation (irrespective of whether this

Figure 3. Amplitude/frequency detection in feed-forward loops. Frequency detection (bandwidth vBW , panels A, B) and amplitude detection
(output susceptibility sO, panels C, D) versus relative strength RS for coherent (left) and incoherent (right) feed-forward loop modules. Susceptibilities
and time scales as in Figs. 2A–D. (E) Blue line: Input signal at two different frequencies, v = 0.2 and v = 1 t{1. Grey line: Response of a coherent FFL
module with RS = 0.33 and sO = 12 (larger than the maximum value allowed for a linear cascade, Figure 3C). Red line: Response of a positive feedback
circuit with the same susceptibility (FS = 0.33). (F) Blue line: Input signal at v = 0.2 and v = 1 t{1 as in Figure 3E. Grey line: Response of an incoherent
FFL module with sO = 0.6 (RS = 6). Red line: Response of a negative feedback module with the same susceptibility (FS = 6).
doi:10.1371/journal.pone.0012314.g003
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is random or periodic). Using Gillespie simulations [24] we verified

that the linear noise approximations Eqs. (10)–(11) quantitatively

reproduce the numerical power spectra and coefficient of variation

for different circuits (Figure 4A–B, left, and Figure S5A–B).

Noise tolerance emerges in noisy signal detection
How is the amplitude/frequency detection performance

changed in the presence of noise? We first plotted the

amplitude/frequency SNRs for the negative (positive) feedback

circuits as a function of FS (Figure 4C–F), as in the noiseless

situation (Figure 2). In these analyses, we fixed input frequency (to

the one where the amplitude of the oscillatory response was

maximal) and also noise strengths, in order to compare on the

same footing different module architectures. The behavior of

SNRfreq(vI) did not qualitatively change when selecting other

input frequencies within the bandwidth of the noiseless circuit.

Two observations on frequency detection are relevant from

inspection of Figures 4C,D: 1)there exists a range of potential

SNRfreq’s for each FS [linked to the fact that the different terms in

the spectrum, Eq. (11), are tuned by the individual susceptibilities],

and 2)the maximum SNRfreq achievable, both for positive and

negative feedback, cannot exceed the maximum value attained by

the linear cascade (at FS = 0, see Text S1 for details). Interestingly,

negative feedbacks working as good frequency detectors –large

vBW– exhibited also maximal SNRfreq, i.e., they are highly noise

tolerant.

Regarding amplitude detection, it is clear that high output

susceptibility might not only amplify signal but also fluctuations

[18]. The latter, however, depends on the circuit class. For positive

feedback, SNRamp increases as a function of FS, i.e., fluctuations

are less amplified than signal [18] (Figure 4F). For negative

feedback, Figure 4E, we observed the opposite: a decrease in

susceptibility (Figure 2C) is not followed by an effective noise

reduction, and the overall SNRamp decreases. Note that in the

regime where a positive feedback module functioned as a good

amplitude detector doubling the linear cascade susceptibility

(dashed line in Figure 4F, see also Figure 2), we observed a large

SNRamp. In summary, simple two-component modules perform-

Figure 4. Quantifying signal detection with noisy components. A. Noisy amplitude detection. Left: A noisy step input acts on a detection
module (also with intrinsic fluctuations). Middle: Output response characterized by susceptibility sO and amplitude of fluctuations around the
equilibrium value, sO . Right: Power spectrum of fluctuations around equilibrium. Black line is the numerical computation and red line is analytical
result. (B) Noisy frequency detection. Left: Oscillatory input with noise. Middle: Output response in the time domain. Right: Output response in
frequency domain [total power spectrum P(v)]. The height of the peak at the input frequency vI is proportional to the squared amplitude A2(vI).
The theoretical background spectrum is plotted with a red line. (C) Frequency SNR for the negative feedback module as a function of FS. The dashed
line approximately marks the FS value above which deterministic frequency detection is close to optimal for this module (Figure 2A). (D) Frequency
SNR as a function of FS for the positive feedback module. (E) Amplitude SNR for negative feedback. (F) Amplitude SNR for positive feedback. The
region of best amplitude detection performance (more than twice the linear cascade limit, Figure 2D) is approximately delimited by the dashed line.
For panels C–F, susceptibility ranges and time-scales are as in Figs. 2,3A–D. Noise strength is determined by cell volume V , and here we take V~1
(Text S1).
doi:10.1371/journal.pone.0012314.g004
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ing a specific signal detection task in an optimal manner (good-

detection regime) are tolerant to noise. When these very same

modules work in poor-detection regimes, their performance also

turned out to be more prone to noise corruption.

What should we expect in a module acting as a good dual

detector? We argued previously how the coherent FFL could

simultaneously exhibit high susceptibility without losing band-

width in a noiseless situation. How does noise affect these tasks? To

answer this question, we plotted the SNRs as a function of relative

strength in Figure 5 (compare also to Figure 3). We found that

both SNRamp and SNRfreq are able to surpass the linear cascade

SNR limit (RS = 0). Moreover, this enhanced noise-tolerance is a

robust feature, not subjected to a precise fine-tuning of the FFL

parameters. For a uniform random sample of pairwise suscepti-

bilities sOS and sOI (scattered blue dots in Figure 5) most of the

circuits are very close to the maximum SNRs. The reason for this

behavior is that coherent FFLs are able to achieve high sensitivity

due to the direct input/output interaction while reducing noise

propagated through the sensor species (see discussion in Text S1

and Figure S5C,D). Scanning for all possible detection modules

which could simultaneously improve amplitude and frequency

SNRs, we found that a feed–forward loop type interaction was

necessary to surpass the linear cascade limit (Figure S7B).

Noise tolerance can be achieved by frequency filtering
An alternative strategy of noise tolerance might be at play in

molecular circuits working as frequency detectors. In this situation,

signals could be discriminated from fluctuations when their

characteristic frequencies are different to the noise frequency

content, i.e., the circuit effectively acts as a noise-filtering device.

To determine the frequency range where noise is filtered out one

can compare the corresponding bandwidth of the spectrum of

fluctuations, Eq. (11), with that of the oscillatory amplitude, Eq.

(2), with high-pass filtering mechanisms being at the core of noise

tolerance (Text S1 and Figure S6).

We identified two potential high-pass filter contributions in the

power spectrum [numerators *v2 in Eq.(11)]. The first one

appears in the intrinsic output fluctuations. This type of high-pass

filtering works when the module exhibits a negative feedback

interaction, sOS
:sSOv0, (Text S1 and Ref. [25]). Note that this

term is not present in the amplitude of the oscillatory response, Eq.

(2). Therefore, in the negative feedback circuit, one could expect

that fluctuations are transmitted at higher frequencies than

oscillations, allowing for a noise-free frequency regime. This is

shown in Figure 6A. At moderate to high feedback strength

(Figure S6), there are negative feedback circuits whose fluctuation

bandwidth (dashed black line in Figure 6A) is always at higher

frequencies than the oscillatory bandwidth (red dashed line in

Figure 6A) allowing for a noise-free frequency regime in

transmitted oscillations (grey shaded region in Figure 6A).

A second high-pass filter appeared when describing the

propagated fluctuations from the signal to the output [last term

in Eq. (11)], i.e., in a FFL architecture. This filter is also part of the

oscillatory response, and dominates in the incoherent FFL

(Figure 3B). However, the two additional terms in Eq. (11) due

to intrinsic circuit fluctuations are low-pass, compensating in part

the shift to high frequency noise. Thus, incoherent FFLs may act

as noise-tolerant systems when transmiting high frequency

oscillations. This is demonstrated in Figure 6B. In the case that

the direct susceptibility sOI is larger than the global susceptibility

sO (i.e., RSw1, which is only possible in the incoherent FFL), the

high-pass filter for the transmitted oscillations dominates. In this

situation, there is a range of high frequency oscillations free of

noise (grey shaded region in Figure 6B). The bandwidth of the

fluctuation spectrum is however still large, i.e., no perfect filter

exists unlike the negative feedback case.

These mechanisms of noise filtering would not be active in the

limit when the detector module lacked intrinsic noise,

DSS~DOO~0, and thus both signal and noise frequencies were

transmitted in the same way [compare Eqs. (2) and (11)]. In this

case, the SNR depends only on the input oscillatory amplitude aI

and noise intensity DII as SNRfreq~
a2

I t2
I

pDII

(independent of vI).

Thus, intrinsic noise in both output and sensor species emerged as

a fundamental condition to alter spectral properties of the output

fluctuations inducing noise tolerance.

Signal detection properties in genetic circuits regulating
sugar metabolism

Kaplan et al. [26,27] recently measured the in vivo production

rate (input function) of different sugar utilization genes in

Escherichia coli, as a function of two different inputs: cAMP, which

activates in a graded manner CRP, one of the master transcription

factors in E. coli [26], and the cognate sugar. CRP activates most of

the genes involved in sugar metabolism by means of a coherent

Figure 5. Noise tolerance is robust in coherent FFLs. A.
Frequency SNR for the coherent FFL module. Black line: Maximum
SNR. The scattered points correspond to an ensemble of *15,000
different circuits generated by randomly sampling susceptibility values
within the interval ½0, 5�. B. Amplitude SNR for coherent FFL. Red line:
Maximum SNR. The scattered points correspond to the same ensemble
of panel A.
doi:10.1371/journal.pone.0012314.g005
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FFL architecture, through the activation of an intermediate

transcription factor [26]. The exception is the galactose utilization

system which forms an incoherent FFL and shows a non-

monotonic input function [27]. High resolution experimental

measurements of production rates were made by spanning the

whole range of physiological response for both inputs. We then

considered these systems as good candidates to qualitatively assess

if the signal detection features presented here can be found in

living cells under natural conditions. We used simple mathematical

models, fitted to the experimental input functions, to obtain the

detection properties of these circuits with the preceding theory

(Ref. [27] and Text S1).

We focused first on the incoherent FFL case, Figure 7A–C. For a

fixed value of the sugar input, the cAMP/CRP response shows a

maximum (Figure 7B and Ref. [27]) indicating that the galactose

system operates as a band–pass detector for cAMP signal amplitude.

This amplitude filter behavior was also observed in synthetic

incoherent FFL circuits in E. coli [28,29]. The reason behind the

band–pass feature is that the susceptibility of the output (in this case,

GalE protein) changes sign, since the direct CRP/GalE activation

saturates and the negative interaction dominates, repressing the galE

promoter at high cAMP levels (Figure S8). Therefore the relative

strength is high around the maximum of the input function, and we

expect band–pass filtering also for oscillatory signals. This is shown in

Figure 7C, where the bandwidth of the galE response for an

oscillatory cAMP input is plotted in a color code as a function of

cAMP and galactose concentrations. White lines delineate the cAMP

boundaries, for a fixed galactose concentration, where the system

behaves as a band–pass frequency detector. Moreover, taking into

account the noise in biochemical reactions, this system is also able to

filter fluctuations for high–frequency oscillations by the mechanism

discussed in the previous Section (noise filter range is marked with

black solid lines in Figure 7C). We also analyzed a synthetic band

amplitude detector constructed by Basu et al. [28], using parameters

estimated from experimental data. Band detection is observed in this

case as a function of a single input (AHL) but we reached identical

conclusions: band–pass frequency and noise filtering mechanisms

operate in the regime of band amplitude detection (Figure S9) and are

thus intrinsic properties of incoherent FFLs.

As a case study of a natural coherent FFL, we chose the maltose

regulon, Figure 7B. This is one of the simplest systems investigated

in [26] since no additional autoregulations are present in the FFL

components, and the inducer maltotriose acts postranscriptionally

(favouring MalT activation by self-association [30]). Fitting the

production rates of both MalT and MalE to the experimental input

functions we set out a concise mathematical model for the malE

response in terms of both inducers and the sensor transcription

factor MalT (Text S1). When comparing with the linear cascade

limit (neglecting the direct CRP/MalE interaction) we corroborated

that bandwidth and susceptibility of the coherent FFL are larger in

the whole input range. One of our main findings was that, for

moderate input/sensor strengths, a coherent FFL was capable of

improving signal detection in the presence of noise, giving SNRs

beyond the linear cascade limit. We plotted the SNR in amplitude

(Figure 7E) and frequency (Figure 7F) divided by the maximum

value achieved by a linear cascade module in the whole input range

(keeping identical susceptibilities for CRP/MalT and MalT/MalE

interactions). As seen from Figure 7E–F, the SNR can improve up

to factor of two (in amplitude) or three (in frequency)

Discussion

We introduced an analytical framework to study the amplitude

and frequency response of a general class of two-component

genetic circuits (Figure 1). Signal sensitivity was quantified in terms

of susceptibility (for amplitude detection) or bandwidth(frequency

detection). In the simplest scenario, the linear cascade I?S?O,

we found that these responses act independently (constraint-free),

and that the slowest time scale of the cascade [9], and also its

length [20], were limiting factors on maximal frequency

transmission (i.e., bandwith).

For circuits with additional interactions, we found that

frequency detection was dependent on a single parameter

biologically meaningful(feedback strength, autoregulation strength,

or relative strength in the case of feed–forward loops). In this way,

we could show that feedback of the output species back to the

sensor, while improving amplitude or frequency detection in

comparison to the linear cascade, manifested the presence of

functional trade-offs. Indeed, optimizing circuit design for

amplitude detection (positive feedbacks with large FS) reduced

frequency detection capacity. Alternatively, an optimized frequen-

cy detector (negative feedbacks with large FS) can hardly detect

amplitude. These trade-offs similarly applied to linear cascades

with autoregulatory loops.

Figure 6. Noise frequency filters. Noise tolerance by filtering in frequency detection. A. Negative feedback module with FS~6 and susceptibility
sO~0:34. Red solid line: Amplitude of oscillatory output as a function of input frequency, A2(v). Red dashed line: Bandwidth of A2(v). Black solid
line: Power spectrum of fluctuations, Pfluc(v). Black dashed line: Bandwidth of Pfluc(v). The grey region marks the noise-free frequency regime for the
oscillatory response. In this case all the fluctuations are shifted to higher frequencies and do not overlap with the input frequencies detected by the
module. B. Incoherent FFL with RS~6 and sO~0:34. Lines are as in panel A. The grey region (noise-free frequency detection) is in this case only at
high input frequencies.
doi:10.1371/journal.pone.0012314.g006
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However, direct action of the signal on the output species, in a

FFL architecture, modifies these features. We showed how the

coherent FFL improved both amplitude and frequency detection,

and the potential of incoherent FFLs to work as high-pass

frequency filters. Previous theoretical [31] and experimental

studies [27–29] demonstrated that incoherent FFLs could also

act as band-pass detectors in signal amplitude, providing maximal

output activity at intermediate signal levels. The ability of

incoherent FFLs to respond to high frequency time-periodic

stimulation has been also noticed [32] using boolean regulatory

functions and trains of pulses. We showed here how band-

detection in frequency is possible for a large enough ratio of direct

and indirect susceptibilities (relative strength). This critical

parameter links in this way band-pass response for both static

and oscillating signals. These features make FFL architectures the

best design to achieve flexible signal detection, at the cost of a

decrease in amplitude/frequency detection when compared to

circuits honed in to these tasks, i.e., cascades with feedbacks. A

similar methodology to the one employed here (systematic

sampling of three node networks and linear approximations) but

disregarding noise effects, has been recently used to show that

incoherent FFLs and negative feedbacks were the only two robust

topologies achieving biochemical adaptation [33].

To consider scenarios where biomolecular noise could be

relevant [15], we used two measures of detection based on signal-

to-noise ratios. Using this formalism, we argued how optimal

frequency or amplitude detectors (feedbacks with large FS) were

also particularly noise tolerant. Indeed, positive feedbacks (or

autoregulation) were previously revealed to improve amplitude

detection, while minimizing signal propagated noise [18] (see

Figure 4F, where intrinsic noise was also included).

Interestingly, module noise [first two terms in Eqs. (10)–(11)]

can enhance both amplitude and frequency SNR relative to the

linear cascade in some architectures. This is the case of coherent

Figure 7. Response features of natural FFLs. Detection properties of FFL circuits involved in sugar metabolism. A. The galETK operon response
to cAMP and galactose is mediated by an incoherent FFL interaction, where the external inducers cAMP and D-galactose are required for CRP and
GalS activity, respectively. D. The malEFG operon is activated by cAMP and maltotriose through a coherent FFL involving CRP and MalT transcription
factors [26]. B. Production rate of the galE-DgalR system. A mathematical model was fitted to the experimental input function (Ref. [27] and Text S1).
For each galactose concentration, the production rate reaches a maximum at a particular value of external cAMP (shown with the dashed black line).
C. Oscillatory bandwidth of the galE-DgalR incoherent FFL for the same input ranges. White lines delimit the cAMP boundaries where the system acts
as a band-pass frequency filter. Black lines mark the boundaries of partial noise filtering (as illustrated in Figure 6B). E–F. Detection in the presence of
noise for the CRP/MalT/MalE coherent FFL. We fitted a simple mathematical model to the experimental input functions (Text S1) to calculate the SNR
for both amplitude and frequency detection as a function of both inputs. E. Amplitude SNR normalized by the maximum SNR obtained setting the
direct cAMP/malE interaction to zero (linear cascade limit). F. Frequency SNR normalized by the linear cascade limit.
doi:10.1371/journal.pone.0012314.g007
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FFLs. In this type of circuits, the direct input/output interaction

increases signal sensitivity and simultaneously reduces propagated

noise through the sensor component, eventually allowing a

reduction of the total output noise. This improvement of SNR

in coherent FFLs could not be found if only signal noise is taken

into account [18].

Can noise tolerance be achieved in other ways? We discussed an

alternative based on noise frequency filtering. In a negative feedback

the module noise can be in the high frequency regime [25] but the

signal propagated noise (and thus the propagated periodic signal) be

in a lower frequency regime. This allows an effective separation of

time scales for oscillations and fluctuations: fluctuations can be faster

than the transmitted oscillation frequencies.

Notably, incoherent FFLs were found to exhibit the opposite

behavior. For these modules, signal fluctuations are accelerated

due to the direct interaction between input and output, and thus

the module is also responsive at high periodic frequencies, but

intrinsic fluctuations may be much slower. Thus incoherent FFLs

can separate oscillation and fluctuation time scales only at high

oscillatory frequencies. These results emphasize the complexity of

analyzing noise even in simple scenarios, where all possible noise

sources could exhibit counfounding effects (see [34] for another

example, where noise reduction in a molecular species with

negative feedback may be at the expense of increasing noise in the

other species).

To evaluate some of the discussed signal-detection properties in

specific systems, we obtained the response of several FFLs under

natural conditions by fitting model circuit parameters to

experimentally measured data. We confirmed in this way the

possibility of band-pass filtering and noise-tolerance in the natural

incoherent FFL associate to the GalETK operon (Figure 7A–C).

These features were also corroborated with data from a synthetic

incoherent FFL assembled with the LuxR, CI and LacI

transcription factors [28]. Moreover, we also verified that a

coherent FFL associated to maltose metabolism (Figure 7D–F)

could exhibit –in the natural range of the corresponding stimuli–

better amplitude and frequency detection than a linear cascade,

when biochemical noise was also taken into account.

The dynamic features of noise can also be used to extract

information about the relevant interactions and strengths of simple

genetic circuits [35–37]. In this sense, our work may be useful in

reverse engineering contexts: measuring frequency transmission of

oscillatory signals is feasible but technically difficult [9,10], because

the input should be tightly controlled in some kind of microfluidic

device. Alternatively, using standard single cell techniques one

could measure a long enough time series of the fluctuations around

steady state in the absence and presence of a permanent signal to

obtain the corresponding spectra [36,38], and subtract them to

compute the contribution of the propagated noise from the signal

[third term in Eq. (11)]. This contribution gives the same

information about circuit parameters than the oscillatory response

as a function of input frequency, but can be obtained with less

experimental effort.

Methods

Detailed derivations of theoretical expressions used in the paper,

models, numerical simulations and fittings to experimental data

are provided in Text S1.

Supporting Information

Text S1 Detailed mathematical derivations, additional analyses

and discussions, numerical models and tests of approximations

used in the main text and model fitting to experimental data.

Found at: doi:10.1371/journal.pone.0012314.s001 (0.22 MB

PDF)

Figure S1 Response properties of a linear genetic cascade. A.

Output relative change after a step input signal [Eq. (1.26) in Text

S1], as a function of susceptibility. Black circles: aI = 0.01. Red

circles: aI = 0.1. Solid lines are the linear predictions given by Eq.

(1.27) in Text S1. B. Squared relative amplitude of the output

oscillatory response to a signal [Eq. (1.8) in Text S1], as a function

of the signal frequency vI. Black circles: aI = 0.01. Red circles:

aI = 0.1. Blue circles: aI = 0.5. Solid lines are the theoretical

predictions given by Eqs. (2–3) in main text. Kinetic equations and

additional parameters are provided in Section 6 of Text S1.

Found at: doi:10.1371/journal.pone.0012314.s002 (0.03 MB EPS)

Figure S2 Dependence of the frequency response of the linear

cascade on time scale and cascade length. A. Black solid line:

Squared amplitude as a function of input frequency for a three

tier cascade (Input-Sensor-Output) with degradation rates

dI = dS = dO = 1. Red line: dI = dS = dO = 2. Blue line: dI = 1,

dS = dO = 2. Other parameters are input amplitude aI = 0.1 and

output susceptibility sO = 4. B. Dot-dashed line: Squared ampli-

tude of oscillatory response for a single species with periodically

forced production rate. Dashed line: Response for a two-layered

cascade (oscillatory input acting on a single component). Solid line:

Three layer cascade with oscillatory input acting through an

intermediate sensor species. Parameters are dI = dS = dO = 1,

aI = 0.1 and sO = 4. The shaded region shows the bandwidth

of the single species response, which is equal to the degradation

rate dO.

Found at: doi:10.1371/journal.pone.0012314.s003 (0.04 MB EPS)

Figure S3 Amplitude/frequency detection for modules with

output autoregulation as a function of autoregulation strength

(ARS, defined in Text S1). A,C: Negative autoregulation. B,D:

Positive autoregulation. A. Bandwidth for negative autoregulation

of the output component. C. Susceptibility for negative autoreg-

ulation. Red line is the maximum output susceptibility as a

function of ARS (Table S1) and grey shaded region the range of

possible susceptibilities for individual interactions in the interval

[0,5]. B. Bandwidth for positive autoregulation of the output

element. D. Output susceptibility for positive autoregulation. Red

lines and grey region as in panel C.

Found at: doi:10.1371/journal.pone.0012314.s004 (0.29 MB EPS)

Figure S4 High-pass filtering behavior of an incoherent FFL.

Grey line: Theoretical oscillatory amplitude as a function of input

frequency for an incoherent FFL module with sO = 0.6 and

RS = 6. Grey circles are the numerical results. Black line:

theoretical oscillatory amplitude for a negative feedback with the

same sO and FS = 6. Black circles: numerical results. Input

amplitude is aI = 0.013. Red dashed lines indicate the input

frequencies for the trajectories shown in Fig. 3F in main text. See

Section 6 in Text S1 for model details.

Found at: doi:10.1371/journal.pone.0012314.s005 (0.03 MB EPS)

Figure S5 Noise properties of FFL circuits. A. Output noise

(coefficient of variation) as a function of input noise tuned by

means of the ‘‘volume’’ factor VI. Solid lines represent theory

while circles denote numerical simulations. Red: linear cascade.

Blue: coherent FFL. Green: incoherent FFL. Parameters: sSI = 1,

sO = 2, VS = VO = 1, and tI = tS = tO = 1. The relative strength is

RS = 0.5 both for coherent and incoherent FFLs. B. Power

spectrum of the output response to an oscillatory signal of

frequency vI = 1 and amplitude aI = 0.05 for the same circuits.

Parameters as in panel A, except VI = 2 for all circuits, and RS = 1

for the incoherent FFL. Black lines: numerical simulations.
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Colored lines: theoretical background spectra. Red: linear cascade.

Blue: coherent FFL. Green: incoherent FFL. Crosses mark the

peak height at the signal frequency for each genetic circuit. Inset:

Numerical peak heights as a function of input frequency (black

circles). Red and green lines correspond to the theoretical

amplitudes A2(vI), Eq. (2) in main text, for the linear cascade

and incoherent FFL, respectively. C. Output coefficient of

variation as a function of output susceptibility [from Eq. (2.44)

in Text S1] at sSI = 2 for a linear cascade (red) and a coherent FFL

(blue). Time scales are tI = tS = tO = 1, ‘‘system size’’ factor

V = 100 for all components (with equilibrium values Ieq =

Seq = Oeq = 1) and the rest of the interactions change in the interval

[0,5] as in main text. D. Amplitude of maximum oscillatory

response versus fluctuation power spectrum at the same frequency,

for the same sampling of circuits shown in panel C.

Found at: doi:10.1371/journal.pone.0012314.s006 (2.23 MB EPS)

Figure S6 Noise frequency filtering range in negative feedback

and incoherent FFLs. Filter range, Eq. (4.69) in Text S1, for

negative feedback circuits (A) and incoherent FFL circuits (B) as a

function of feedback and relative strength, respectively. The

shaded region in panel A marks the regime where fluctuations are

completely filtered out (FS.5), since they are shifted at frequencies

higher than the oscillatory response bandwidth.

Found at: doi:10.1371/journal.pone.0012314.s007 (0.20 MB EPS)

Figure S7 FFL interactions are required for optimal amplitude/

frequency detection. A. Relative frequency of two-component

detection motifs simultaneoulsy improving amplitude/frequency

detection in a noiseless situation (both susceptibility and band-

width larger than the linear cascade limit). B. Relative frequencies

of two–component detection modules with both amplitude and

frequency signal-to-noise rations larger than the linear cascade

limits. CFFL: Coherent FFL. IFFL: Incoherent FFL. PF: Positive

feedback. NF: Negative feedback. PAR: Positive autoregulation.

NAR: Negative autoregulation. F: Feedback (it can be either

positive or negative). MIX: Combination of at least two

interactions (feedback or autoregulations) with different sign. See

Section 5 in Text S1 for statistical estimations.

Found at: doi:10.1371/journal.pone.0012314.s008 (0.01 MB EPS)

Figure S8 Band frequency filtering in the GalS/GalE system.

GalE production rate and susceptibilities as a function of external

cAMP concentration for [galactose] = 6 mM. The maximum in

production (marked with a cross in Figure S8A) coincides with the

change of sign of the output(GalE) susceptibility (red line in Figure

S8B). GalS/GalE and CRP/GalE susceptibilities are shown with

green and black dashed lines respectively in panel B. See Section 7

in Text S1 for model details.

Found at: doi:10.1371/journal.pone.0012314.s009 (0.02 MB EPS)

Figure S9 Band–pass frequency filtering of a quorum sensing

network. A. The synthetic construction experimentally studied by

Basu et al., Ref. [28] in main text, includes an incoherent FFL

where the input AHL/LuxR activates both CI and LacI

repressors, while CI also shuts off LacI expression. The output

of the system is monitored by a LacI dependent GFP. B. GFP

output measured as a function of external AHL. The inset shows a

zoom of the GFP response around the peak, where the oscillatory

high–pass filter and noise filtering regimes are indicated by arrows.

C. LacI susceptibility as a function of AHL. Note that it changes

sign around maximum GFP response. D. GFP oscillatory

response(green line) for a periodic AHL input (blue line) with

mean concentration 0.04 mM (orange circle in the inset of panel

A). Model details are given in Section 7 of Text S1.

Found at: doi:10.1371/journal.pone.0012314.s010 (0.12 MB EPS)

Table S1 Definition of frequency detection parameters and

corresponding susceptibility ranges for simple network motifs.

Found at: doi:10.1371/journal.pone.0012314.s011 (0.03 MB

PDF)
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