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Abstract

Background: Reduced TOR signaling has been shown to significantly increase lifespan in a variety of organisms [1,2,3,4]. It
was recently demonstrated that long-term treatment with rapamycin, an inhibitor of the mTOR pathway[5], or ablation of
the mTOR target p70S6K[6] extends lifespan in mice, possibly by delaying aging. Whether inhibition of the mTOR pathway
would delay or prevent age-associated disease such as AD remained to be determined.

Methodology/Principal Findings: We used rapamycin administration and behavioral tools in a mouse model of AD as well
as standard biochemical and immunohistochemical measures in brain tissue to provide answers for this question. Here we
show that long-term inhibition of mTOR by rapamycin prevented AD-like cognitive deficits and lowered levels of Ab42, a
major toxic species in AD[7], in the PDAPP transgenic mouse model. These data indicate that inhibition of the mTOR
pathway can reduce Ab42 levels in vivo and block or delay AD in mice. As expected from the inhibition of mTOR, autophagy
was increased in neurons of rapamycin-treated transgenic, but not in non-transgenic, PDAPP mice, suggesting that the
reduction in Ab and the improvement in cognitive function are due in part to increased autophagy, possibly as a response
to high levels of Ab.

Conclusions/Significance: Our data suggest that inhibition of mTOR by rapamycin, an intervention that extends lifespan in
mice, can slow or block AD progression in a transgenic mouse model of the disease. Rapamycin, already used in clinical
settings, may be a potentially effective therapeutic agent for the treatment of AD.
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Introduction

Alzheimer’s disease (AD), the most common neurodegener-

ative disorder in the elderly[8], is currently without effective

treatment. The accumulation of soluble oligomeric forms of the

amyloid-b peptide (Ab), derived from proteolytic processing of

the amyloid precursor protein (APP), is a major cause of

neurotoxicity in AD[8]. The greatest known risk factor for AD is

increasing age. PDAPP [also known as hAPP(J20)] mice are a

well-defined mouse model of AD[9,10]. PDAPP mice accumu-

late soluble and deposited Ab and develop AD-like synaptic

deficits as well as cognitive impairment and hippocampal

atrophy[9,10,11].

The target of rapamycin (TOR) pathway is a major signaling

hub that integrates nutrient/growth factor availability with cell

metabolism[12] through two distinct complexes, mTORC1 and

mTORC2[13]. mTORC1 functions as a nutrient/energy/redox

sensor and controls protein synthesis. In addition, mTORC1

inhibits autophagy when nutrients and energy are plentiful

through the phosphorylation of Unc51-like kinase 1 (ULK1) and

mAtg13, the mammalian homologs of the yeast kinase Atg1 and

Atg13 respectively, which are essential for the formation of pre-

autophagosomal structures [14]. Phosphorylation of ULK1 and

mAtg13 inhibits ULK1 activity.

mTOR also regulates autophagy through mTORC2. Active

mTORC2 phosphorylates and activates Akt and PKC[15,16].
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Since Akt positively regulates mTORC1, phosphorylation of Akt

by mTORC2 stimulates mTORC1 function, inhibiting autoph-

agy. In addition, phosphorylated Akt blocks the activation of

FOXO3, a member of the FOXO family of transcription factors

that have a key role in lifespan extension in invertebrates. Among

many targets, FOXO factors regulate expression of autophagy-

related genes[17]. Thus mTORC2 activity indirectly inhibits

autophagy through inactivation of FOXO3.

Autophagy is a major degradation pathway for organelles and

aggregated proteins[18] such as those that cause multiple

neurodegenerative diseases including AD. It has been reported

that autophagy is activated in AD brains[19]. While excessive

autophagic activity can lead to cell death, increased autophagy has

been shown to facilitate the clearance of aggregation-prone

proteins such as Ab[20,21,22], pathological prion protein[23,24],

and a-synuclein[25], and to promote neuronal survival in a variety

of neurodegenerative disease models. Supporting the notion that

autophagy may have a protective role in AD, deletion of the beclin

1 gene in PDAPP mice impaired autophagy and resulted in large

increases in Ab levels and accelerated Ab deposition[26]. On the

other hand, the endosomal-lysosomal system is a major site of Ab
production[27,28] and it was recently demonstated that Ab is

generated during macroautophagy both in vitro and in vivo[19].

The role of the mTOR pathway and of autophagy in AD is thus

still unclear.

A recent report showed that long-term treatment with

rapamycin, an inhibitor of the mTOR pathway[5], or ablation

of the mTOR target S6K1[6] extends lifespan in mice, possibly by

delaying aging. Whether inhibition of the mTOR pathway would

delay or prevent age-associated disease such as AD remained to be

determined. Here we show that long-term mTOR inhibition by

rapamycin inhibited mTOR in brain, prevented AD-like cognitive

deficits (Fig. 1) and lowered levels of Ab42 (Fig. 2) in the PDAPP

transgenic mouse model. These data indicate that inhibition of the

mTOR pathway by long-term rapamycin treatment can reduce

Ab42 levels in vivo and block or delay AD in mice. As expected

from the inhibition of mTOR, autophagy was strongly activated in

hippocampus of rapamycin-treated mice. Activation of autophagy

was prominent in transgenic, but not in non-transgenic, PDAPP

mice (Fig. 3), suggesting that the reduction in Ab and the

improvement in cognitive function may be due in part to increased

autophagy in neurons, possibly as a response to high levels of Ab in

transgenic mice. Consistent with this hypothesis, inhibition of

mTOR by rapamycin had no effect on endogenous mouse Ab
levels in non-transgenic brains, in which the autophagic response

was not activated. Thus, our data suggest that inhibition of mTOR

by rapamycin, an intervention that extends lifespan in mice, can

lower Ab levels and slow or block AD progression in a transgenic

mouse model of the disease, possibly by stimulating autophagy.

Rapamycin, already used in clinical settings, may be a potentially

effective therapeutic agent for the treatment of AD.

Results and Discussion

A recent report showed that microencapsulated rapamycin, an

inhibitor of the mTOR pathway[5], or genetic ablation of the

mTOR target S6K1[6] extends lifespan in mice, possibly by

retarding aging. Whether rapamycin would prevent or delay age-

associated disease such as AD was unknown. To answer this question,

we fed a rapamycin-supplemented diet identical to the diet that

extended lifespan in mice[5] or control chow to groups of PDAPP

mice and littermate non-transgenic controls for 13 weeks starting at 4

months of age. At 4 mo, hAPP(J20) PDAPP mice

[9,10,11,29,30,31,32] show high Ab levels and synaptic dysfunc-

tion[11,32], but no Ab plaques or spatial memory impairments. At

the end of treatment (7 mo), learning and memory were tested using

the Morris water maze [11,31,33,34]. Consistent with our and others’

previous observations [11,29,31,32,35], we observed significant

deficits in learning and memory in control-fed transgenic PDAPP

animals (Figure 1a and b). Rapamycin-fed transgenic PDAPP mice,

however, showed improved learning (Figure 1a) and memory

(Figure 1b), with improved performances on the last day of training

and retention of the former location of the escape platform restored to

levels indistinguishable from those of non-transgenic littermates

(Figure 1b). Although no significant interactions were observed

during training between day number and genotype, nor between day

number and treatment for control-fed animals, a significant

interaction between treatment and training day was observed, with

increasingly lower latencies (thus increasingly improved performance)

for rapamycin-fed PDAPP transgenic animals as training progressed

(Figure 1a). This observation suggests that incremental learning

during the acquisition phase may be accelerated or improved in

rapamycin-treated PDAPP transgenic mice. A trend to improved

performance during both the acquisition and testing phases was

observed in rapamycin-treated non-transgenic animals, but these

differences did not reach statistical significance. Thus, our data

indicate that rapamycin treatment can ameliorate learning deficits

and abolish memory impairments in PDAPP mice. No significant

differences in thigmotaxis and floating, measures of anxiety and

helplessness respectively (Figure 1c and d) nor in visual acuity

(Figure 1a, inset) were found among groups, suggesting that

improved performance in rapamycin-treated PDAPP mice is a result

of effects on cognitive processes but not to effects related to non-

cognitive components of behaviour, nor to differences in visual

ability.

To determine the mechanism by which rapamycin treatment

abolishes AD-like cognitive deficits in transgenic PDAPP mice, we

examined (a) mTOR activity and (b) the proteolytic processes that

generate of Ab in PDAPP mouse brains. Phosphorylation of the

mTOR target p70S6K[6] was reduced in brains of both

rapamycin-treated PDAPP mice and non-transgenic littermates,

indicating that mTOR activity was inhibited (Fig. 2a–c)[36,37] in

brains of both genotypes. Levels of Ab42, but not of Ab40, were

reduced in rapamycin-treated transgenic PDAPP mice

(Figure 2d). The reduction in Ab42 in PDAPP brains did not

likely arise from changes in production, since the abundance of

C99, the C-terminal product of b-secretase cleavage of APP, as

well the levels of expression of hAPP were unchanged by

rapamycin (Fig. 2f–h). An increase in a-secretase cleavage could

not explain the reduction in Ab42 either, since increased a-

cleavage would result in increased C83 (Fig. 2f and i). In

addition, the reduction in Ab42 did not likely arise from increased

degradation, since levels of the two major Ab-degrading activities,

neprilysin (NEP)[35], and insulin-degrading enzyme (IDE)[38]

were unchanged in brains of control- and rapamycin-fed PDAPP

mice as well (Fig. 2f, j–k). Ab deposition was not determined

since no Ab plaques are detectable in PDAPP mice at 7 mo. To

determine whether levels of endogenous mouse Ab (mAb) would

be affected by rapamycin treatment we measured mAb42 and

mAb40 in brains of control- and rapamycin-treated non-transgenic

littermates using specific ELISAs. Levels of mouse Ab40 were

unchanged by rapamycin treatment (Fig. 2e). Levels of mouse

Ab42 were below the limits of detection for the ELISA (please see

Methods).

Autophagy is a key pathway for the clearance of aggregation-

prone proteins and may have a protective role in proteinopa-

thies[20,39]. Inhibition of the mTOR pathway by rapamycin

activates autophagy[40]. Moreover, rapamycin-induced autopha-
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gy has been implicated in the regulation of amyloid accumulation

in vivo[26] and in the clearance of huntingtin[21,40] and a-

synuclein[41]. The role of autophagy in AD, however, is not

clear[19,27]. The induction of autophagy is associated with

increased levels of microtubule-associated-protein-light-chain-3

(LC3)-II, the lipidated form of LC3[42], with respect to levels of

a control protein such as b-actin or b-tubulin[43]. To determine

whether rapamycin treatment affected autophagy in PDAPP

brains, we examined LC3-II and b-actin in hippocampus of

control- and rapamycin-treated PDAPP mice. LC3-II is created

during autophagosome formation and is subsequently degraded as

autophagosomes mature into autolysosomes. Lysosomal turnover

of LC3-II, commonly termed autophagic flux, is the standard

biochemical measurement for autophagy[43]. During autophagy,

LC3-II on the cytosolic side of autophagosomal membranes is

delipidated to LC3-I and is also degraded intraluminally by

lysosomal hydrolases[43,44]. Thus, decreased LC3-II levels may

be observed as a consequence of robust induction of autophagic

flux[43,44]. In agreement with the expected induction of

autophagy by rapamycin-mediated inhibition of mTOR, LC3-

II/b-actin ratios in hippocampi of rapamycin-treated PDAPP

mice were significantly decreased (Fig. 3a–b). In contrast, no

Figure 1. Rapamycin abrogates memory deficits in PDAPP hAPP(J20) mice. a, Rapamycin improves learning in PDAPP mice. While
learning in both transgenic groups was impaired with respect to wild-type littermates’ [**, P,0.001 for both comparisons, Bonferroni’s post hoc test
applied to a significant effect of genotype and treatment, F(3,120) = 29.46, P,0.0001, repeated measures two-way ANOVA], performance of
rapamycin-fed PDAPP mice was improved with respect to the control-fed transgenic group only in the last day of training (#P = 0.036 for the
comparison of performance between transgenic groups, Student’s t test), indicating improved learning of rapamycin-fed PDAPP mice at day 4. No
significant interaction was observed between day number and genotype (P = 0.96), indicating that genotype had roughly the same effect at all times
during training. Although no significant interaction was observed between day number and treatment for control-treated animals (P = 0.91), a
significant interaction was observed between day number and treatment for rapamycin-treated groups. The effect of rapamycin treatment became
more pronounced as training progressed, as indicated by the slopes for the learning curves (m = 25.14 for rapamycin-treated as compared to
m = 23.58 for control-treated PDAPP transgenic mice; m = 24 for rapamycin-treated as compared to m = 22.95 for control-treated non-transgenic
mice). A trend to improved learning was observed in rapamycin-treated non-Tg mice, but this difference was not significant. Overall learning was
effective in all groups [F(3,120) = 10.29, P,0.0001, repeated measures two-way ANOVA]. Inset, learning was effective in all experimental groups
during cued training. b, Rapamycin restores spatial memory in PDAPP mice. While retention in control-fed PDAPP mice was impaired with
respect to all other groups, as previously described[11,31,35,50] [P values are indicated, Tukey’s multiple comparisons test applied to a significant
effect of genotype (P,0.0001) in one-way ANOVA], memory in rapamycin-fed PDAPP mice was indistinguishable from that of control- or rapamycin-
fed non-Tg groups. A trend to improved retention was observed in rapamycin-treated non-Tg mice, but this difference did not reach statistical
significance. c and d, Rapamycin treatment does not affect non-cognitive components of behavior. c, Although transgenic groups spent
more time engaged in thigmotactic swim, as described[31] (** P,0.001, Bonferroni’s post hoc test applied to a significant effect of genotype
[F(3,440) = 15.04, P,0.0001, two-way ANOVA], no significant difference in percent time spent in thigmotactic swim was observed between transgenic
groups. d, No significant difference in floating was observed between groups. Data are mean 6 SEM.
doi:10.1371/journal.pone.0009979.g001
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differences in LC3-II/b-actin ratios were observed between

control- and rapamycin-treated non-transgenic littermates

(Fig. 3a–b), suggesting that rapamycin may induce autophagy

as a response to high Ab levels in hippocampi of transgenic

PDAPP mice. During autophagy, LC3 redistributes to autophago-

somes, which can be visualized as puncta in individual

cells[19,43,44]. To determine whether the decreased LC3-II/b-

actin ratios in hippocampi of rapamycin-treated PDAPP mice

resulted from the induction of autophagic flux, we examined LC3

distribution, as well as levels of p62SQSTM, an ubiquitin-binding

scaffold protein that is specifically degraded by autophagy[22,45],

in hippocampi of control- and rapamycin-treated PDAPP mice.

LC3-immunoreactive puncta were increased in the projections of

hippocampal neurons of rapamycin-treated PDAPP mice (Fig. 3c–
d), suggesting that LC3 was redistributed to a vesicle-like

compartment. Consistent with this observation, levels of the

autophagosomal substrate p62SQSTM were significantly de-

creased in hippocampi of rapamycin-treated PDAPP mice

(Figure 3f–g). Phosphorylation of p70 was significantly reduced

in hippocampi of both PDAPP transgenic and non-transgenic

littermate controls, indicating that mTOR activity was inhibited

(Fig. 3h–i). Taken together, our results suggest that autophagy is

induced by rapamycin-mediated mTOR inhibition specifically as

a response to high Ab levels in hippocampi of rapamycin-treated

PDAPP mice.

The data presented here are, to our knowledge, the first to show

that inhibition of mTOR by rapamycin decreased Ab42 levels

(Fig. 2) and rescued cognitive function (Fig. 1) in a mouse model

of AD. Our data suggest that the reduction in Ab42 levels and the

improvement in cognitive function in rapamycin-treated PDAPP

mice may be a consequence of the induction of autophagy in

hippocampus (Fig. 3) by high levels of Ab in PDAPP transgenic

brains. Consistent with a key role for high levels of Ab in the

activation of autophagy when mTOR activity is reduced,

rapamycin did not induce autophagy in brains of rapamycin-

treated non-transgenic mice, in which levels of endogenous Ab are

much lower than those in PDAPP transgenic brains. In addition,

rapamycin treatment did not induce autophagy and did not affect

levels of endogenous Ab in non-transgenic mice, suggesting that

autophagy may have a key role in reducing Ab42 in transgenic

PDAPP brains. Rapamycin was administered to PDAPP mice at a

dose that was previously shown to extend lifespan in mice[5]. Our

observations are thus consistent with a recent report that showed

that the life-extending effect of TOR inhibition in C. elegans

requires autophagy[46]. It is possible that the activation of

autophagy as a response to Ab accumulation is reduced with

increasing age[47,48]. This may be a consequence of inactivation

of DAF family member FOXO factors by mTOR signaling during

aging[13]. Prolonged rapamycin treatment may thus release

mTOR-mediated inhibition of autophagy and allow for the

reduction of Ab levels through this clearance mechanism in

transgenic PDAPP brains. Although rapamycin treatment did not

activate autophagy nor reduce endogenous mouse Ab levels, it

inhibited mTOR function in non-transgenic littermate brains, and

this group showed trends to improved learning and retention.

Although the differences in performance between control-fed and

Figure 2. Rapamycin inhibits mTOR and decreases Ab42 levels in brains of PDAPP mice. a, b and f, representative immunoblots of whole
brain lysates from control- and rapamycin-treated PDAPP transgenic and non-transgenic littermate mice; c, g–k, quantitative analyses of protein or
phosphoprotein levels. a–c, Levels of phosphorylated (activated) p70 were decreased in brains of rapamycin-treated non-transgenic (a) and
transgenic PDAPP (b) mice (c, **, P = 0.006 and *, P = 0.01 respectively). d, rapamycin did not alter Ab40 levels but significantly decreased soluble Ab42

levels in the brains of transgenic PDAPP mice *, P = 0.02. Homogenates were measured at 100 mg brain tissue/ml. e, rapamycin did not alter levels of
endogenous mouse Ab40 levels in brains of non-transgenic mice. Ab42 levels were below the detection limit of the ELISA (not shown). f,
representative immunoblots of PDAPP mouse brain extracts. g–k, Quantitative analyses of APP, C99 and C83, NEP and IDE immunoreactivity in
lysates of brains from control- and rapamycin-treated PDAPP mice. Data were normalized to b-actin levels. Student’s t test was used to determine
significance of differences between means. Data are means 6 SEM.
doi:10.1371/journal.pone.0009979.g002
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Figure 3. Rapamycin increases autophagy in brains of PDAPP mice. a, f and h, representative immunoblots of hippocampal lysates from
control- and rapamycin-treated transgenic PDAPP mice and non-transgenic littermate controls. b, g and i, quantitative analyses. a and b, LC3-II
levels are decreased in hippocampi of rapamycin-treated transgenic PDAPP mice (*, P = 0.0009), but not in hippocampi of rapamycin-treated non-
transgenic littermates. c and d, representative epifluorescent (c, 2006) and higher-magnification confocal (d, 6006) images of hippocampal CA1 (e,
green box, region of epifluorescent images; blue box, region of confocal images) in control- and rapamycin-fed transgenic PDAPP mice stained with
an anti-LC3 antibody. An increase in LC3-immunoreactive puncta was observed in CA1 projections of transgenic PDAPP mice following rapamycin
administration. f and g, levels of the autophagic substrate p62SQSTM are decreased (*, P = 0.0015) in hippocampi of rapamycin-treated PDAPP
transgenic mice. f, representative Western blots; g, quantitative analyses of p62SQSTM levels. h and i, Levels of phosphorylated (activated) p70 were
decreased in brains of rapamycin-treated PDAPP and non-transgenic mice (*, P = 0.001 and P = 0.04 respectively). Significance of differences between
group means were determined using two-tailed unpaired Student’s t test. Data are means 6 SEM.
doi:10.1371/journal.pone.0009979.g003
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rapamycin-fed non-transgenic groups were not significant, they

may suggest that changes in pathways different from autophagy

(such as effects on the regulation of protein synthesis) as a result of

long-term mTOR inhibition may have a positive effect on learning

and memory. Reducing Ab levels abolishes cognitive impairments

in a variety of models[49]. We cannot rule out, however, mTOR-

dependent effects on cognition that may be additive to the benefit

of reduced Ab in our model system.

In summary, our data suggest that inhibition of mTOR by

rapamycin[5], an intervention that extends lifespan in mice[5,6], can

slow or block AD progression in a transgenic mouse model of the

disease. Rapamycin, already used in clinical settings, may thus be a

potentially effective therapy for the prevention or treatment of AD.

Methods

Mice
The derivation and characterization of PDAPP [hAPP(J20)]

mice has been described elsewhere[9,10,29]. PDAPP mice were

maintained by heterozygous crosses with C57BL/6J mice (Jackson

Laboratories, Bar Harbor, ME). PDAPP mice were heterozygous

with respect to the transgene. Non-transgenic littermates were

used as controls. Rapamycin administration and behavioral

experiments involving PDAPP mice were conducted at the Buck

Institute for Age Research, Novato, CA. Experimental groups

were: control-fed non-Tg, n = 10; rapamycin-fed non-Tg, n = 10;

control-fed Tg, n = 12; rapamycin-fed Tg, n = 12, all animals were

males and 7 month-old at the time of testing. Rapamycin was

administered for 13 weeks starting at 4 months of age.

Rapamycin treatment
Mice were fed chow containing either microencapsulated

rapamycin at 2.24 mg/kg or a control diet as described by Harrison

et al.[5]. Rapamycin was used at 14 mg per kg food (verified by

HPLC). On the assumption that the average mouse weighs 30 gm

and consumes 5 gm of food/day, this dose supplied 2.24 mg

rapamycin per kg body weight/day[5]. All mice were given ad libitum

access to rapamycin or control food and water for the duration of the

experiment. Body weights and food intake were measured weekly.

Food consumption remained constant for both control- and

rapamycin-fed groups during treatment (no significant effect of week

# on food consumption by two-way ANOVA, P = 0.108). Food

consumption was higher for rapamycin-fed animals (by an average of

2.1260.22 g/mouse/week at all times during the experiment

(P,0.001, two-way ANOVA). This may be a result of the inhibition

of the mTOR pathway, which is expected to mimic the unfed state by

decreasing mTOR activity. Littermates (transgenic and non-

transgenic mice) were housed together, thus we could not distinguish

effects of genotype on food consumption. In spite of the differences in

food consumption, overall body weight of control- and rapamycin-fed

groups was not significantly different (25.5960.43 to 26.8960.44 for

control-fed and 26.7760.48 to 28.1160.53 for rapamycin-fed

animals) although body weight increased moderately for both groups

during the 13 week treatment, possibly as a result of the change in

base chow composition (increases were 5% and 11% for rapamycin-

fed transgenic and non-transgenic groups respectively; 10 and 15%

for control-fed transgenic and non-transgenic groups respectively).

The relatively higher increase in body weight for non-transgenic

animals is not unexpected, since non-transgenic animals tend to be

slightly (1–3 g) heavier than PDAPP transgenic mice.

Behavioral testing
The Morris water maze (MWM)[11,31,33] was used to test

spatial memory. All animals showed no deficiencies in swimming

abilities, directional swimming or climbing onto a cued platform

during pre-training and had no sensorimotor deficits as deter-

mined with a battery of neurobehavioral tasks performed prior to

testing. All groups were assessed for swimming ability 2 days

before testing. The procedure described by Morris et al.[33] was

followed as described[11,31]. Briefly, transgenic and non-trans-

genic PDAPP mice were given a series of 6 trials, 1 hour apart in a

light-colored tank filled with opaque water whitened by the

addition of non-toxic paint at a temperature of 24.061.0uC. In the

visible portion of the protocol, animals were trained to find a

12612-cm submerged platform (1 cm below water surface)

marked with a colored pole that served as a landmark placed in

different quadrants of the pool. The animals were released at

different locations in each 60-second trial. If mice did not find the

platform in 60 seconds, they were gently guided to it. After

remaining on the platform for 20 seconds, the animals were

removed and placed in a dry cage under a warm heating lamp.

Twenty minutes later, each animal was given a second trial using a

different release position. This process was repeated a total of 6

times for each mouse, with each trial ,20 minutes apart. In the

non-cued part of the protocol, the water tank was surrounded by

opaque dark panels with geometric designs at approximately

30 cm from the edge of the pool, to serve as distal cues. The

animals were trained to find the platform with 6 swims/day for 4

days following the same procedure described above. At the end of

training, a 30-second probe trial was administered in which the

platform was removed from the pool. The number of times that

each animal crossed the previous platform location was deter-

mined as a measure of platform location retention. During the

course of testing, animals were monitored daily, and their weights

were recorded weekly. Performance in all tasks was recorded by a

computer-based video tracking system (Water2020, HVS Image,

U.K). Data were analyzed offline by using HVS Image and

processed with Microsoft Excel.

Western blotting and Ab determinations
Mice were euthanized by isoflurane overdose followed by

cervical dislocation. Hemibrains were flash frozen. One hemibrain

was homogenized in liquid N2 while the other was used in

immunohistochemical determinations (5–6 per group) and for

hippocampal dissections (5–6 per group). Half brains were

microdissected to isolate the hippocampus by peeling away the

cortex from the underlying hippocampus and releasing the

hippocampus from the surrounding tissue, in particular the

fimbria, by using fine surgical tweezers (Fine Science Tools) and

then lifting toward the midline. The hippocampus separates easily

but does include some adjacent white matter, which is then

carefully tweezed off. We also obtained hippocampal tissue from at

least 12610 mm unfixed frozen sections mounted on glass slides.

All but the hippocampal area was removed using a scalpel under a

SZ60 Olympus dissecting microscope. The hippocampal tissue

itself was removed by beading 10 ml of RIPA lysis buffer (25 mM

Tris-HCl, pH 7.6; 150 mM NaCl; 1% NP40; 1% sodium

deoxycholate; 0.1% sodium dodecyl sulfate) on it and then

pipetting it up. For Western blot analyses, proteins from soluble

fractions of brain LN2 homogenates and from hippocampal

dissections were resolved by SDS/PAGE (Invitrogen, Temecula,

CA) under reducing conditions and transferred to a PVDF

membrane, which was incubated in a 5% solution of non-fat milk

or in 5% BSA for 1 hour at 20uC. After overnight incubation at

4uC with primary antibodies, the blots were washed in TBS-

Tween 20 (TBS-T) (0.02% Tween 20, 100 mM Tris pH 7.5;

150 nM NaCl) for 20 minutes and incubated at room temperature

with appropiate secondary antibodies. The blots were then washed

mTOR Inhibition in Alzheimer’s
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3 times for 20 minutes each in TBS-T and then incubated for

5 min with Super Signal (Pierce, Rockford, IL), washed again and

exposed to film or imaged with a Typhoon 9200 variable mode

imager (GE Healthcare, NJ). Human Ab40 and Ab42 levels, as well

as endogenous mouse Ab40 levels were measured in guanidine

brain homogenates using specific sandwich ELISA assays

(Invitrogen, Carlsbad, CA) as described[11].

Antibodies
Antibodies used were: anti-IDE (Abcam, ab32216); anti-NEP

(R&D AF1126); anti-APP (CT15 (REF); anti-phospho-p70 (Cell

Signaling, #9206); anti-b-actin (Sigma, A3853); anti-LC3 (Novus

Biologicals, NB100-2331); anti-p62 (Progen, GP62-C).

Immunohistochemistry
Ten-micrometer coronal cryosections from snap-frozen brains

were post-fixed in 4% paraformaldehyde and stained with LC3-

specific antibodies (10 mg/ml, Nous, Littleton, CO) followed by

AlexaFluor488-conjugated donkey anti-rabbit IgG (1:500, Molec-

ular Probes, Invitrogen, CA), and imaged with a epifluorescence

microscope (Nikon Eclipse E800 with a FITC cube) or with a laser

scanning confocal microscope (Zeiss LSM 510) using a 488 Argon

laser and a 505 long-pass filter. Images were obtained using 206
and 606 objectives. Z-stacks of confocal images were processed

using LSM Viewer software (Zeiss). All images were collected in

the stratum radiatum of the hippocampus immediately beneath

the CA1 layer at Bregma ,22.18. The MBL Mouse Brain Atlas

was used for reference.

Statistical analyses
Statistical analyses were performed using GraphPad Prism

(GraphPad, San Diego, CA) and StatView. In two-variable

experiments, two-way ANOVA followed by Bonferroni’s post-hoc

tests were used to evaluate the significance of differences between

group means. When analyzing one-variable experiments with

more than 2 groups, significance of differences among means was

evaluated using one-way ANOVA followed by Tukey’s post-hoc

test. Evaluation of differences between two groups was evaluated

using Student’s t test. Values of P,0.05 were considered

significant.
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