Specification of the Lee-Carter approach

1.1 Notations and abbreviations

\(y_{\text{age}, \text{year}} \): number of events of age in year

\(n_{\text{age}, \text{year}} \): population size of age in year

\(\alpha_{\text{age}} \): age-specific effect of age

\(\beta_{\text{age}} \): age-period adjustment term of age

\(\kappa_{\text{year}} \): period effect at year

\(E(\cdot) \): expectation function

\(\text{sign}(\cdot) \): sign function of a value, 1 for positive and -1 for negative.

\(\ell(\cdot) \): log-likelihood function

\(\text{ARIMA}(p, d, q) \): Autoregressive integrated moving average with \(p \) number of time lags of the autoregressive term, \(d \) order of differencing term, and \(q \) number of time lags of the moving-average term.
1.2 Model structure and assumptions

Lee-Carter model [1] was defined as

\[
\log(E(y_{\text{year}, \text{age}})) = \alpha_{\text{age}} + \beta_{\text{age}} \kappa_{\text{year}} + \log(n_{\text{year}, \text{age}})
\]

Two constraints are needed for ensuring identifiability:

\[
\sum_{\text{year}} \kappa_{\text{year}} = 0 \\
\sum_{\text{age}} \beta_{\text{age}} = 1
\]

In implementation, we used a Poisson-regression-based approach [2] for the Lee-Carter model

\[
y_{\text{year}, \text{age}} \sim \text{Poisson}(\mu_{\text{year}, \text{age}})
\]

\[
\mu_{\text{year}, \text{age}} = n_{\text{year}, \text{age}} \exp(\alpha_{\text{age}} + \beta_{\text{age}} \kappa_{\text{year}})
\]

Thus, the log-likelihood function is

\[
\ell(\alpha_{\text{age}}, \beta_{\text{age}}, \kappa_{\text{year}} | y_{\text{year}, \text{age}}, n_{\text{year}, \text{age}}) = -\mu_{\text{year}, \text{age}} + y_{\text{year}, \text{age}} \log(\mu_{\text{year}, \text{age}}) - \log(y_{\text{year}, \text{age}}!)
\]

\[
= y_{\text{year}, \text{age}}(\alpha_{\text{age}} + \beta_{\text{age}} \kappa_{\text{year}}) - n_{\text{year}, \text{age}} \exp(\alpha_{\text{age}} + \beta_{\text{age}} \kappa_{\text{year}}) + \text{constant}
\]

1.2.1 Comparator models

Two reduced models were considered as comparators:

Age-Period model assumed \(\beta_{\text{age}} \) are the same for all age groups, so the model reduced to

\[
y_{\text{year}, \text{age}} \sim \text{Poisson}(\mu_{\text{year}, \text{age}})
\]

\[
\mu_{\text{year}, \text{age}} = n_{\text{year}, \text{age}} \exp(\alpha_{\text{age}} + \kappa_{\text{year}})
\]

Age-Trend model assumed \(\beta_{\text{age}} \) are the same for all age groups and a linear period effect, so the model reduced to
\[y_{\text{year,age}} \sim \text{Poisson}(\mu_{\text{year,age}}) \]
\[\mu_{\text{year,age}} = n_{\text{year,age}} \exp(\alpha_{\text{age}} + \text{year} \times \kappa) \]

1.3 Model fitting

The maximum likelihood estimation of this model is to solve

\[
\arg\max_{\alpha_{\text{age}}, \beta_{\text{age}}, \kappa_{\text{year}}} \ell(\alpha_{\text{age}}, \beta_{\text{age}}, \kappa_{\text{year}} | y_{\text{year,age}}, n_{\text{year,age}})
\]

subject to

\[
\sum_{\text{year}} \kappa_{\text{year}} = 0 \\
\sum_{\text{age}} \beta_{\text{age}} = 1
\]

We employed Newton methods as described in Brouhns et al. [2] to this task. Our implementation used `StMoMo::fit` function from package StMoMo [3].

1.4 Modelling and forecasting

For period effects, \(\kappa_{\text{year}} \), we employed the Box-Jenkins method, which uses autocorrelation function (ACF), partial autocorrelation function (PACF), and extended ACF if necessary to specified a time-series model of \(\kappa_{\text{year}} \). This specification and modelling were implemented using functions, `TSA::acf`, `TSA::pacf`, and `TSA::eacf` from package `TSA` [4].

1.5 Bootstrap

The bootstrap simulation employed the semi-parametric bootstrap by Renshaw and Haberman [5]. Our implementation used `StMoMo::simulation` function from package StMoMo [3]. In general, we generated 10,000 simulations for each presented result.
1.6. Measurements of goodness of fit

Since the likelihood-based LCM we applied is a special case of the ordinary Poisson regression [6], the measurements of goodness of fit of Poisson regression can be directly applied.

Akaike information criterion (AIC): by definition,

\[2k - 2\hat{\ell}(\hat{\alpha}_{age}, \hat{\beta}_{age}, \hat{\kappa}_{year}|y_{year,age}, n_{year,age}) \]

, where \(\hat{\ell}(.)\) is the log-likelihood function given estimated parameters, \(k\) is the number of parameters, which equals the sum of the numbers of \(\hat{\alpha}_{age}, \hat{\beta}_{age}, \hat{\kappa}_{year}\) minus two constraints.

Bayesian information criterion (BIC): by definition,

\[\log(o)k - 2\hat{\ell}(\hat{\alpha}_{age}, \hat{\beta}_{age}, \hat{\kappa}_{year}|y_{year,age}, n_{year,age}) \]

, where \(k\) is the number of parameters as above and \(o\) is number of observations.

Deviance residuals: We used the deviance residuals defined in Colin Cameron and Trivedi [6] to assess the goodness of fit.

\[\text{sign}(y_{age,year} - E(y_{age,year})) \sqrt{2\left[y_{age,year}\log \frac{y_{age,year}}{E(y_{age,year})} - (y_{age,year} - E(y_{age,year}))\right]} \]
Bibliography

