S2 Appendix. Competition evaluation for Gene Inference challenge. To assess imputation accuracy, we created an evaluation metric that balanced both absolute and relative measures of accuracy. Let \(P_{ij} \) represent the predicted expression levels for a set of samples, indexed by \(i = 1, ..., N \), and non-landmark gene labels, indexed by \(j = 1, ..., M \) (for this study, \(M = 11350 \)). Similarly, let \(G_{ik} \) represent the true (measured) expression levels for the same set of samples and non-landmark genes, indexed \(k = 1, ..., \). For each pair of gene labels \(j, k \), construct the Spearman rank correlation matrix elements \(\rho_{jk}(P,G) \) between prediction and truth data across all the samples. For a given gene label \(j \), let \(R_j(P,G) \) be the relative rank of the correlations \(\rho_{ij}(P,G) \) where \(k = j \) with respect to the remaining correlations \(k \neq j \). The score attributed to each gene-level prediction is given by an equally-weighted average of the Spearman correlation between prediction and truth data, and the relative rank of the correlation when compared with the correlations associated with the remaining genes:

\[
S_j(P,G) = \frac{1}{2} \left[\rho_{jj}(P,G) + \frac{1}{M} R_j(P,G) \right]
\]

For this competition, gene-level scores were normalized with respect to a benchmark algorithm, which was based on a linear regression model. Let \(B_{ij} \) represent the predictions made by the benchmark algorithm and \(S_j(B,G) \) represent the gene-level scores associated with the benchmark predictions. The final quality of the predictions was determined based on the average:

\[
\bar{S}(P,B,G) = \frac{1}{M} \sum_{j=1}^{M} \frac{2 - S_j(B,G)}{2 - S_j(P,G)}.
\]