S4 Fig.: The most important control patterns of C_{v3}^{J6} as functions of ϕ_N in the free-NADH/NAD$^+$ model. Instead of directly altering the value of ϕ_N, the activity of NADH oxidase was modulated to produce the results shown here. Control patterns were chosen according to the criteria described in the main text (which yielded percentages of 5% and 3% for the two cut-off criteria). (A) The most important control patterns shown in relation to the value of C_{v3}^{J6} and the value of their total sum. While the control coefficient and its constituent patterns follow a similar pattern as those of the fixed-NADH/NAD$^+$ model, there are clear differences in C_{v3}^{J6} between the two models (see Fig. 3 in the main text). (B) The absolute percentage contribution of the most important control patterns relative to the absolute sum of the values of all C_{v3}^{J6} control patterns. In spite of differences between C_{v3}^{J6} in the two models, the cumulative effect of the 20 most important control patterns in the free-NADH/NAD$^+$ model closely mirrors that of the 11 most important control patterns in the fixed-NADH/NAD$^+$ model. Control patterns and C_{v3}^{J6} are indicated in the key. While control patterns can be subdivided into similar dominant groups as in the fixed-NADH/NAD$^+$ model, those groups (along with associated colour coding as shown in Fig. 3 in the main text) are not indicated here. The switch from negative control coefficient values to positive values indicates indicates the reversal of direction of J_6 flux. The black dotted vertical line indicates the steady-state value of ϕ_N in the reference model.