Supporting Material, File S2 Text

Homeostatic Controllers Compensating for Growth and Perturbations

P. Ruoff1*, O. Agafonov1, D. M. Tveit2, K. Thorsen2, T. Drengstig2
1Centre for Organelle Research
2Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway

*Corresponding author. Address: Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway, Tel.: (47) 5183-1887, Fax: (47) 5183-1750, E-mail: peter.ruoff@uis.no
Steady state of transporter-generated compound A without negative feedback

We start with Eq. 15 where transporter T pumps external $A (A_{\text{ext}})$ into a constantly growing cell ($\dot{V}=$constant)

$$\dot{A} = \frac{k_2 \cdot T}{V} - A \left(\frac{\dot{V}}{V} \right)$$ \hspace{1cm} (S1)

We assume that the surface concentration of T is constant and that the pump rate is zero-order with respect to the external A concentration.

The steady state of A is given by setting Eq. S1 to zero, which gives

$$\dot{A} = \frac{k_2 \cdot T}{V} - A \left(\frac{\dot{V}}{V} \right) = 0 \Rightarrow A_{ss} = \frac{k_2 \cdot T}{V}$$ \hspace{1cm} (S2)

independent of the initial concentration of A.

In case there is a first-order removal of cellular A with respect to A the rate equation becomes

$$\dot{A} = \frac{k_2 \cdot T}{V} - k_3 \cdot A - A \left(\frac{\dot{V}}{V} \right) = 0$$ \hspace{1cm} (S3)

Setting Eq. S3 to zero leads to

$$A_{ss} = \frac{k_2 \cdot T}{k_3 \cdot V + V} \rightarrow 0 \quad \text{as} \quad V \rightarrow \infty$$ \hspace{1cm} (S4)

In case the removal of cellular A is zero-order with respect to A (for example by an enzyme removing A at maximum velocity V_{max}), then in this case the steady state condition

$$\dot{A} = \frac{k_2 \cdot T}{V} - V_{\text{max}} - A \left(\frac{\dot{V}}{V} \right) = 0$$ \hspace{1cm} (S5)
gives

\[A_{ss} = \frac{1}{V} (k_2 T - V_{\text{max}} V) \] \hspace{1cm} (S6)

As the volume \(V \) grows there will be a critical volume \(V_{\text{crit}} = k_2 T/V_{\text{max}} \) at which \(A_{ss} \) becomes zero.