S3 Appendix General flowchart for all designs.

All of the designs can be illustrated in a single flowchart (Fig A). In the two-arm single-stage designs \(K = 1 \) and \(J = 1 \). In the multi-arm designs in our simulations \(K = 5 \) and \(J = 4 \). For the frequentist designs the efficacy and futility measures are always equal to the standardized test statistic, i.e. \(e_{kj} = f_{kj} = Z_{kj} \) and the efficacy and futility thresholds are the upper and lower stopping boundaries with \(a_K = b_K \) in order to force a decision at the final analysis.

For the Bayesian designs the efficacy measure is the probability \(e_{kj} = P(p_j < p_0 | \text{Data}_k) \) given the data \(\text{Data}_k \) at the \(k \)-th analysis. The futility measure is \(f_{kj} = P(p_j < p_0 + 0.1 | \text{Data}_k) \). The efficacy and futility thresholds are \(a_k = 0.1 \) and \(b_k = 0.99 \) \((k = 1, \ldots, K)\).

For the designs with complete randomization the allocation probabilities are \(q_j = 1/(\tilde{K} + 1) \) for all \(j = 1, \ldots, J \), where \(\tilde{K} \) is the number of remaining treatment arms at stage \(k \). For the response-adaptive randomization designs the allocation probabilities are initially \(q_j = 1/(K + 1) \) and are then updated at the interim analysis according to Eq (2).

Figure A: General flowchart for all designs. At each of the at most \(K \) (interim) analyses the design-specific efficacy measures \(e_{kj} \) and futility measures \(f_{kj} \) \((k = 1, \ldots, K; j = 1, \ldots, J)\) for all remaining treatment arms are compared to efficacy thresholds \(b_k \) and futility thresholds \(a_k \). Patients are allocated according to allocation probabilities \(q_{kj} \).