S6 Table. Jaguar density estimation with non-spatial and spatially-explicit models.

<table>
<thead>
<tr>
<th>Site</th>
<th>Lorocachi</th>
<th>Tiputini</th>
<th>Kweriono</th>
<th>Maxus Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{N}/\text{ETA})</td>
<td>(\hat{N}\pm SE)</td>
<td>(D_{\hat{N}/\text{ETA}}(n/100 \text{ km}^2)\pm SE)</td>
<td>(CV(%)) of (D)</td>
<td>(S)</td>
</tr>
<tr>
<td>Capture probability, (\hat{p})</td>
<td>0.05</td>
<td>0.04</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Closure test, (P)</td>
<td>0.92</td>
<td>0.07</td>
<td>0.31</td>
<td>0.75</td>
</tr>
<tr>
<td>(\hat{N}\pm SE)</td>
<td>19 ± 5.3</td>
<td>7 ± 2.9</td>
<td>10 ± 4.7</td>
<td>3 ± 1.2</td>
</tr>
<tr>
<td>(\text{ETA (km}^2)</td>
<td>486</td>
<td>467</td>
<td>458</td>
<td>463</td>
</tr>
<tr>
<td>(D_{\hat{N}/\text{ETA}}(n/100 \text{ km}^2)\pm SE)</td>
<td>3.91 ± 1.11</td>
<td>1.50 ± 0.63</td>
<td>2.18 ± 1.04</td>
<td>0.65 ± 0.26</td>
</tr>
<tr>
<td>(CV(%)) of (D)</td>
<td>28.4</td>
<td>42.0</td>
<td>47.8</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Bayesian-SECR

<table>
<thead>
<tr>
<th>Site</th>
<th>Lorocachi</th>
<th>Tiputini</th>
<th>Kweriono</th>
<th>Maxus Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>1681</td>
<td>1663</td>
<td>1557</td>
<td>1671</td>
</tr>
<tr>
<td>(M)</td>
<td>260</td>
<td>240</td>
<td>320</td>
<td>120</td>
</tr>
<tr>
<td>(N_{\text{super}})</td>
<td>92.04 ± 34.56</td>
<td>22.39 ± 23.39</td>
<td>12.45 ± 4.35</td>
<td>4.73 ± 4.12</td>
</tr>
<tr>
<td>(D_{\text{SECR}}(n/100 \text{ km}^2)\pm SD)</td>
<td>5.44 ± 2.04</td>
<td>1.49 ± 1.55</td>
<td>0.89 ± 0.31</td>
<td>0.29 ± 0.26</td>
</tr>
<tr>
<td>(CV(%)) of (D)</td>
<td>37.5</td>
<td>104.0</td>
<td>35.2</td>
<td>86.2</td>
</tr>
</tbody>
</table>

\(\hat{N}\) = population size estimated with program CAPTURE (Model \(M_h\)); \(\text{ETA}\) = effective trapping area; \(D\) = density; \(S\) = state-space, including pixels with non-suitable habitat for jaguar; \(M\) = number of individuals used for data augmentation; \(N_{\text{super}}\) = estimated population in \(S\); \(CV\) = coefficient of variation.