Example codes of the main analyses

Univariate regression

Data transformation
Transformation of continuous variables to linearize relationships and centre baseline to more meaningful value
example: CRP (lab result in mg/dL) was log10-transformed and centered to 10 mg/dL -> new variable lCRP10

data <- within(data, {
lCRP10 <- log10(CRP/10)
x1 <- lCRP10
})

fit logistic regression model,
evaluate linear relationship between variable x1 and antibiotic prescription y (0/1)
unimod1 <- glm(y ~ x1, family="binomial", data=data)

estimates and 95% CI

estimated coefficients, standard errors, z- and p-values
sum1 <- summary(unimod1)$coefficients

extract effect estimates and standard error
est <- sum1["x1","Estimate"]
est.se <- sum1["x1","Std.Error"]

extract baseline estimates and standard error
bl <- sum1["x1","Estimate"]
bl.se <- sum1["x1","Std.Error"]

functions to calculate probability (prob) and odds ratios (OR)
from logistic regression coefficients
prob <- function(a, b) 1/(1+exp(-(a+b))) # a=intercept, b=estimated covariate effect
OR <- function(c) exp(c) # c=estimated covariate effect

calculate OR with 95% CI (ll= lower limit, ul=upper limit)
OR.est = OR(est)
OR.ll = OR(est-1.96*est.se)
OR.ul = OR(est+1.96*est.se)

calculate baseline probablitly with 95% CI
PBL = prob(a=bl, b=0)
PBL.ll = prob(a=bl-1.96*bl.se, b=0)
PBL.ul = prob(a=bl+1.96*bl.se, b=0)

Univariate classification & ROC-analysis

library(pROC)

ROC analysis
roc1 <- roc(y~x1, ci=TRUE)

obtain AUC estimate with 95% CI
roc1

estimate best threshold for continuous covariate
threshl <- ci.coords(roc1, x="best", ret=c("threshold"))

CI of sensitivity, specificity and accuracy using estimated best threshold
coordsp1 <- ci.coords(roc1, x=threshl[2], ret=c("specificity", "sensitivity", "accuracy"))
Multivariate regression & model evaluation

fit multivariate logistic regression model, in this example using 3 linear predictor variables
(x1, x2, x3)
mfinal <- glm(y ~ x1 + x2 + x3, family="binomial")

summary of estimates, OR, and probabilities can be calculated as shown above from
summary(mfinal)

#------------------------
#
Model evaluation
#
#------------------------

global goodness of fit
library(rms)
lrm = logistic regression model using package rms
mfinal <- lrm(y ~ x1 + x2 + x3, x=TRUE, y=TRUE, method="lrm.fit", linear.predictors=TRUE, se.fit=FALSE)
Cessie - van Houwelingen - Copas - Hosmer unweighted sum of squares test for global goodness
of fit
residuals(mfinal, type="gof")

(over)dispersion
Pearson residuals
res <- residuals(mfinal, type="pearson")

dispersion parameter sigma2
sigma2 <- sum(res^2)/length(res)

residuals
library(faraway)
halfnorm(residuals(mfinal))
plot(predict(mfinal, type="link"), residuals(mfinal, type="pearson"))

single term deletion
drop1(multi5, scale=sigma2, test="LRT") # with estimated dispersion

#------------------------
#
predictive performance
#
#------------------------

using a threshold of predicted probability P=0.5, i.e.
if P >= 0.5 => prediction = 1, i.e. antibiotic prescription = yes;
if P < 0.5 => prediction = 0, i.e. antibiotic prescription = no
threshold <- 0.5

model-predicted antibiotic prescription (TRUE or FALSE) for each observation
class <- predict(mfinal, type="response")>=threshold

contingency table
tab <- table(class, mfinal$y)

calculate performance measures with binomial 95% CI
sensitivity <- binconf(tab["TRUE","1"], sum(tab[,"1"])), method="exact")
specificity <- binconf(tab["FALSE","0"], sum(tab[,"0"])), method="exact")
accuracy <- binconf(tab["TRUE","1"]*tab["FALSE","0"], sum(tab), method="exact")
Sensitivity analyses

1) Interaction / subgroup analysis for pleuritic pain in patients aged >/< 2 years

create new factor “fage2” (>/< 2 years) from variable “age”
fage2 <- cut(age, c(0, 2, 18))

interaction model
glm(y~pleupain*fage2, family="binomial")

subgroup analysis
glm(y~pleupain, family="binomial", data=subset(data, age<=2))
glm(y~pleupain, family="binomial", data=subset(data, age>2))

2) Elastic net regression

library(glmnet)
y <- data$y

matrix of possible predictor variables
x <- as.matrix(data[,2:ncol(data)])

set.seed(123) # set seed for cross-validation

fit generalized linear model via penalized maximum likelihood and determine optimal lambda using 100-fold cross-validation (cv) for lowest mis-classification error

(1) using alpha = 0.5 -> elastic net regression
cvfit_class = cv.glmnet(x, y, family="binomial", standardize = TRUE, alpha=0.5, type.measure="class", nfold=100)
illustrate
plot(cvfit_class)
optimal lambda (lowest mis-classification error)
coef(cvfit_class, s="lambda.min")
accepting larger error, but within 1 standard error
coef(cvfit_class, s="lambda.1se")

(2) using alpha = 1 -> lasso
cvfit_class = cv.glmnet(x, y, family="binomial", standardize = TRUE, alpha=1, type.measure="class", nfold=100)
plot(cvfit_class)
coef(cvfit_class, s="lambda.min")

3) Imputation of missing data using fully conditional specification

library(mice)

make an initial mice object to adapt predictors and methods:
in1 <- mice(mytransdat, max=0, print=FALSE)
predictor matrix
mypred <- in1$predictorMatrix

derived variables (e.g. variable "lCRP10" should not be used as predictor
mypred[,"lCRP10"] <- 0

impuation methods
mymeth <- ini\$meth
used methods: "logreg" for binary variables, "ppm" for continuous variables, "polyreg" for categorical with > 2 levels

passive imputation for transformed variables - keep transformations, e.g.
mymeth["1CRP10"] <- "~\{log10(CRP/10)\}"

20 imputations of data with missing variables
imp20 <- mice(data, m=20, pred=mypred, method=mymeth)

re-fit regression model and summarize pooled estimates of n=20 regression models
fit1 <- with(imp20, glm(y~x1, family="binomial")
pool(fit1)