This document provides a detailed, reproducible description of the spatial pattern suitability analysis methodology. It is Supporting Information (S1 Appendix) to the manuscript:

It is written in R Markdown ([1]) and knitr ([2]), two R ([3]) packages for writing dynamic, reproducible reports. A .zip file containing data inputs to reproduce analyses can be downloaded from Dryad (http://dx.doi.org/10.5061/dryad.v103v). Some parts of the code used to print this document have been suppressed to enhance readability. A generalized version of the code is available at URL https://github.com/jgfroese/PATTSI.

Load required R packages

R package raster ([4]) and its dependencies are required for spatial pattern suitability analysis. Session information incl. package versions are listed at the bottom of this document.

require(raster) # for all analyses of raster objects incl. moving window analysis

1. Expert elicitation

For each habitat variable (i.e. its modelled resource quality indices \(x_r \)), we elicited a distance-dependent response-to-pattern curve \(f_{Dr} \) from each individual expert (see manuscript Fig 3). These curves followed a step-wise pattern, because we discretised both:

- distance into five equal distance bands ("very close", "close", "medium", "far" and "very far"), relative to each expert’s defined mobility threshold (i.e. 1km, 2km or 3km).
- resource suitability indices \(S_{Ir} \) into five equal classes ("very good (80-100)", "good (60-80)", "moderate (40-60)", "poor (20-40)" and "very poor (0-20)"), see manuscript S2.1 Table.

We asked experts to relate each distance band to a corresponding suitability class under the assumption that other variables do not constrain suitability. To fill two elicitation gaps (expert 3 did not define \(f_{DB} \) and expert 6 did not define \(f_{DHeat} \)) we

- applied all other experts’ \(f_{Dr} \) to the missing expert’s defined mobility threshold (Expert3 = 2km, Expert6 = 3km)
- computed the average \(f_{Dr} \) and used it for the missing expert’s model

To derive distance weights for computation of 2. Resource suitability indices, Step 4, we used the mid-points of elicited suitability index classes divided by 100 (e.g. class “moderate (40-60)” = \(S_{Ir} = 50 \) = weight 0.5). For class “very good (80-100)” we did not use the mid-point \(S_{Ir} = 90 \) but assigned \(S_{Ir} = 100 \) (= weight 1.0) to avoid unintended distance penalties (i.e. an adjacent resource of quality \(x_r = 60 \) should compute as distance-weighted suitability \(S_{Ir} = 60 \) (if weight is 1.0) and not \(S_{Ir} = 54 \) (if weight is 0.9)).
2. Resource suitability indices

Goal
Focal pixel resource suitability index (SIR) depends on the distance of a (numerical) habitat variable.

Method:
- Generate a circular moving window where each position is weighted by its distance from the focal pixel (radius/weights derived from 1. Expert elicitation).
- compute the focal pixel SIR as the highest weighted value (x_r) of a habitat variable within this moving window.

Step 1
Define a function that returns a circular matrix of given radius and resolution and assigns value 1 if matrix position <= radius and value NA if matrix position > radius (Source: [5]).

```r
make_circ_filter <- function(radius, res){
  circ_filter <- matrix(NA, nrow=1+(2*radius/res), ncol=1+(2*radius/res))
  dimnames(circ_filter)[[1]] <- seq(-radius, radius, by=res)
  dimnames(circ_filter)[[2]] <- seq(-radius, radius, by=res)
  sweeper <- function(mat){
    for(row in 1:nrow(mat)){
      for(col in 1:ncol(mat)){
        dist <- sqrt((as.numeric(dimnames(mat)[[1]])[row])^2 +
                     (as.numeric(dimnames(mat)[[1]])[col])^2)
        if(dist<=radius) {mat[row, col]<-1}
      }
    }
    return(mat)
  }
  out <- sweeper(circ_filter)
  return(out)
}
```

Step 2
Apply function to generate five matrices with different radii (distance bands), relative to each expert’s defined mobility threshold (i.e. 1km for Expert1, 2km for Experts 3/5 and 3km for Experts 2/4/6).
res <- 1 # resolution (= pixel size, e.g. 100m)
m.r.1 <- 10 # matrix radius (= mobility threshold, must be multiple of res, e.g 1km = 10 x 10 0m)
m.1 <- make_circ_filter(m.r.1, res)
m.2 <- make_circ_filter((m.r.1/5)*4, res)
m.3 <- make_circ_filter((m.r.1/5)*3, res)
m.4 <- make_circ_filter((m.r.1/5)*2, res)
m.5 <- make_circ_filter((m.r.1/5), res)

Replace value==1 with unique temp value in ascending order from largest to smallest matrix.

m.1[m.1 == 1] <- 1
m.2[m.2 == 1] <- 2
m.3[m.3 == 1] <- 3
m.4[m.4 == 1] <- 4
m.5[m.5 == 1] <- 5

Step 3

Combine the five matrices into one (two at a time starting with the smallest):

a.5 <- array(NA, dim(m.4), dimnames(m.4)) # create temp array of size = larger matrix
a.5[rownames(m.5), colnames(m.5)] <- m.5 # ... with values = smaller matrix
m.4 <- pmax(m.4, a.5, na.rm = TRUE) # combine values: larger matrix + temp array
a.4 <- array(NA, dim(m.3), dimnames(m.3)) # repeat with: output + next-larger matrix
a.4[rownames(m.4), colnames(m.4)] <- m.4
m.3 <- pmax(m.3, a.4, na.rm = TRUE)
a.3 <- array(NA, dim(m.2), dimnames(m.2))
a.3[rownames(m.3), colnames(m.3)] <- m.3
m.2 <- pmax(m.2, a.3, na.rm = TRUE)
a.2 <- array(NA, dim(m.1), dimnames(m.1))
a.2[rownames(m.2), colnames(m.2)] <- m.2
m.band.1 <- pmax(m.1, a.2, na.rm = TRUE)

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
-10 NA NA
-10 NA NA
-10 NA NA
-10 NA NA
-10 NA NA

Repeat steps 2 and 3 for mobility thresholds 2km and 3km.
Step 4

Replace temp values with expert-elicited weight for each distance band (SIdata.zip file containing f_DFood.csv and other weights derived from 1. Expert elicitation can be downloaded from Dryad (http://dx.doi.org/10.5061/dryad.v103v)).

```r
csv.Food = read.csv("SIdata/S3Appendix/fD/f_DFood.csv")
csv.Food.E1 <- subset(csv.Food, Expert == 'Expert1') # for Expert1 use m.band.1
m.band.1[m.band.1 == 1] <- csv.Food.E1$X1
m.band.1[m.band.1 == 2] <- csv.Food.E1$X0.8
m.band.1[m.band.1 == 3] <- csv.Food.E1$X0.6
m.band.1[m.band.1 == 4] <- csv.Food.E1$X0.4
m.band.1[m.band.1 == 5] <- csv.Food.E1$X0.2
m.band.Food.E1 <- m.band.1
csv.Food.E2 <- subset(csv.Food, Expert == 'Expert2') # for Expert2 use m.band.3
m.band.3[m.band.3 == 1] <- csv.Food.E2$X3
m.band.3[m.band.3 == 2] <- csv.Food.E2$X2.4
m.band.3[m.band.3 == 3] <- csv.Food.E2$X1.8
m.band.3[m.band.3 == 4] <- csv.Food.E2$X1.2
m.band.3[m.band.3 == 5] <- csv.Food.E2$X0.6
m.band.Food.E2 <- m.band.3
csv.Food.E3 <- subset(csv.Food, Expert == 'Expert3') # for Expert3 use m.band.2
m.band.2[m.band.2 == 1] <- csv.Food.E3$X2
m.band.2[m.band.2 == 2] <- csv.Food.E3$X1.6
m.band.2[m.band.2 == 3] <- csv.Food.E3$X1.2
m.band.2[m.band.2 == 4] <- csv.Food.E3$X0.8
m.band.2[m.band.2 == 5] <- csv.Food.E3$X0.4
m.band.Food.E3 <- m.band.2
```

Step 5

Perform moving window analysis using function focal (raster) with parameters (SIdata.zip file containing raster layers with resource quality indices x can be downloaded from Dryad (http://dx.doi.org/10.5061/dryad.v103v)).

```r
r = raster("SIdata/S3Appendix/GIS/Food-quality-dry.tiff") # raster layer with numerical resource quality index, e.g. Food quality in dry season scenario
w = m.band.Food.E1 # moving window is banded weights matrix, e.g. Expert 1 f_Dfood
fun = max # focal pixel takes highest weighted resource quality index within moving window

WARNING! The following process may take several hours depending on the size of r and w.

r.f <- focal(r, w, fun, na.rm = TRUE, pad = FALSE, padValue = NA) # na.rm = TRUE ignores NoData
r.m <- mask(r.f, r) # extract by r to remove padded edges
writeRaster(r.m, filename = paste("SIdata/S3Appendix/out/Food-SI-dry_E1.tif", sep="")) # save output raster
```

Repeat steps 4 and 5 for all four habitat variables and six experts in two seasonal scenarios:

- Water wet/dry = 12 runs
- Food wet/dry = 12 runs
- Heat wet/dry = 12 runs
- Disturbance global scenario = 6 runs
References

Session information

```r
## Session info ----------------------------------------
##
##  setting value
## version R version 3.1.3 (2015-03-09)
## system  x86_64, mingw32
## ui KTerm
## language (EN)
## collate English_Australia.1252
## tz Australia/Brisbane
## date 2017-04-25

## Packages -----------------------------------------
##
##  package  * version date       source
## devtools  1.10.0  2016-01-23 CRAN (R 3.1.3)
## digest   0.6.8   2014-12-31 CRAN (R 3.1.3)
## evaluate 0.8     2015-09-18 CRAN (R 3.1.3)
## formatR  1.2.1   2015-09-18 CRAN (R 3.1.3)
## htmltools 0.3    2015-12-29 CRAN (R 3.1.3)
## knitr    1.12.3  2016-01-22 CRAN (R 3.1.3)
## lattice  0.20-30 2015-02-22 CRAN (R 3.1.3)
## magrittr 1.5     2014-11-22 CRAN (R 3.1.3)
## memoise  1.0.0   2016-01-29 CRAN (R 3.1.3)
## raster   2.4-20  2015-09-08 CRAN (R 3.1.3)
## Rcpp     0.12.1  2015-09-10 CRAN (R 3.1.3)
## rgdal    1.1-1   2015-11-02 CRAN (R 3.1.3)
## rmarkdown 0.9.2  2016-01-01 CRAN (R 3.1.3)
## sp       1.2-1   2015-10-18 CRAN (R 3.1.3)
## stringi 1.0-1   2015-10-22 CRAN (R 3.1.3)
## stringr  1.0.0   2015-04-30 CRAN (R 3.1.3)
## yaml     2.1.13  2014-06-12 CRAN (R 3.1.3)
```