<table>
<thead>
<tr>
<th>KEGG pathway</th>
<th>Ngenes</th>
<th>Direction</th>
<th>p-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYTOSOLIC DNA SENSING PATHWAY</td>
<td>44</td>
<td>Up</td>
<td>9.89E-02</td>
<td>2.33E-01</td>
<td>Up</td>
<td>8.06E-02</td>
<td>1.90E-01</td>
<td>Up</td>
<td>4.49E-02</td>
<td>1.47E-01</td>
<td>Up</td>
<td>5.96E-03</td>
<td>3.58E-02</td>
<td>Up</td>
<td>7.90E-03</td>
<td>3.50E-02</td>
<td>Up</td>
<td>2.60E-03</td>
<td>1.03E-02</td>
<td>Up</td>
<td>1.38E-03</td>
<td>7.77E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEROID HORMONE BIOSYNTHESIS</td>
<td>78</td>
<td>Down</td>
<td>8.38E-01</td>
<td>9.01E-01</td>
<td>Down</td>
<td>1.40E-02</td>
<td>6.04E-02</td>
<td>Down</td>
<td>1.43E-02</td>
<td>6.91E-02</td>
<td>Down</td>
<td>1.66E-06</td>
<td>3.07E-05</td>
<td>Down</td>
<td>1.77E-04</td>
<td>2.31E-03</td>
<td>Down</td>
<td>1.88E-03</td>
<td>7.76E-03</td>
<td>Down</td>
<td>7.42E-04</td>
<td>5.72E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLYCEROLIPID METABOLISM</td>
<td>57</td>
<td>Up</td>
<td>1.83E-01</td>
<td>3.18E-01</td>
<td>Up</td>
<td>8.93E-04</td>
<td>7.35E-03</td>
<td>Up</td>
<td>1.72E-02</td>
<td>7.82E-02</td>
<td>Up</td>
<td>5.23E-03</td>
<td>3.48E-02</td>
<td>Up</td>
<td>4.77E-02</td>
<td>2.57E-02</td>
<td>Up</td>
<td>3.03E-04</td>
<td>2.59E-03</td>
<td>Up</td>
<td>6.21E-02</td>
<td>2.26E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEISHMANIA INFECTION</td>
<td>99</td>
<td>Up</td>
<td>1.48E-01</td>
<td>2.96E-01</td>
<td>Up</td>
<td>3.12E-02</td>
<td>1.02E-01</td>
<td>Up</td>
<td>3.92E-03</td>
<td>3.64E-02</td>
<td>Up</td>
<td>6.16E-03</td>
<td>3.58E-02</td>
<td>Up</td>
<td>1.84E-04</td>
<td>2.31E-03</td>
<td>Up</td>
<td>2.42E-03</td>
<td>9.80E-03</td>
<td>Up</td>
<td>7.04E-04</td>
<td>5.72E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOLL LIKE RECEPTOR SIGNALING PATHWAY</td>
<td>115</td>
<td>Up</td>
<td>7.67E-02</td>
<td>2.04E-01</td>
<td>Up</td>
<td>2.71E-02</td>
<td>9.52E-02</td>
<td>Up</td>
<td>6.40E-03</td>
<td>4.47E-02</td>
<td>Up</td>
<td>1.00E-03</td>
<td>9.79E-03</td>
<td>Up</td>
<td>9.73E-03</td>
<td>1.51E-03</td>
<td>Up</td>
<td>8.71E-04</td>
<td>5.05E-03</td>
<td>Up</td>
<td>3.97E-04</td>
<td>4.67E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINOLEIC ACID METABOLISM</td>
<td>48</td>
<td>Down</td>
<td>2.13E-01</td>
<td>5.31E-01</td>
<td>Down</td>
<td>2.01E-02</td>
<td>9.69E-03</td>
<td>Down</td>
<td>6.48E-03</td>
<td>4.47E-02</td>
<td>Down</td>
<td>1.29E-06</td>
<td>3.08E-05</td>
<td>Down</td>
<td>1.38E-04</td>
<td>1.91E-03</td>
<td>Down</td>
<td>3.54E-09</td>
<td>6.58E-07</td>
<td>Down</td>
<td>5.89E-02</td>
<td>9.89E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANTOTHENATE AND COA BIOSYNTHESIS</td>
<td>18</td>
<td>Up</td>
<td>1.29E-02</td>
<td>6.39E-02</td>
<td>Up</td>
<td>6.74E-03</td>
<td>8.93E-02</td>
<td>Up</td>
<td>1.72E-02</td>
<td>6.91E-02</td>
<td>Up</td>
<td>5.96E-03</td>
<td>3.58E-02</td>
<td>Up</td>
<td>7.90E-03</td>
<td>3.50E-02</td>
<td>Up</td>
<td>2.60E-03</td>
<td>1.03E-02</td>
<td>Up</td>
<td>1.38E-03</td>
<td>7.77E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLYCEROLIPID METABOLISM</td>
<td>57</td>
<td>Up</td>
<td>1.83E-01</td>
<td>3.18E-01</td>
<td>Up</td>
<td>8.93E-04</td>
<td>7.35E-03</td>
<td>Up</td>
<td>1.72E-02</td>
<td>7.82E-02</td>
<td>Up</td>
<td>5.23E-03</td>
<td>3.48E-02</td>
<td>Up</td>
<td>4.77E-02</td>
<td>2.57E-02</td>
<td>Up</td>
<td>3.03E-04</td>
<td>2.59E-03</td>
<td>Up</td>
<td>6.21E-02</td>
<td>2.26E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEISHMANIA INFECTION</td>
<td>99</td>
<td>Up</td>
<td>1.48E-01</td>
<td>2.96E-01</td>
<td>Up</td>
<td>3.12E-02</td>
<td>1.02E-01</td>
<td>Up</td>
<td>3.92E-03</td>
<td>3.64E-02</td>
<td>Up</td>
<td>6.16E-03</td>
<td>3.58E-02</td>
<td>Up</td>
<td>1.84E-04</td>
<td>2.31E-03</td>
<td>Up</td>
<td>2.42E-03</td>
<td>9.80E-03</td>
<td>Up</td>
<td>7.04E-04</td>
<td>5.72E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOLL LIKE RECEPTOR SIGNALING PATHWAY</td>
<td>115</td>
<td>Up</td>
<td>7.67E-02</td>
<td>2.04E-01</td>
<td>Up</td>
<td>2.71E-02</td>
<td>9.52E-02</td>
<td>Up</td>
<td>6.40E-03</td>
<td>4.47E-02</td>
<td>Up</td>
<td>1.00E-03</td>
<td>9.79E-03</td>
<td>Up</td>
<td>9.73E-03</td>
<td>1.51E-03</td>
<td>Up</td>
<td>8.71E-04</td>
<td>5.05E-03</td>
<td>Up</td>
<td>3.97E-04</td>
<td>4.67E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINOLEIC ACID METABOLISM</td>
<td>48</td>
<td>Down</td>
<td>2.13E-01</td>
<td>5.31E-01</td>
<td>Down</td>
<td>2.01E-02</td>
<td>9.69E-03</td>
<td>Down</td>
<td>6.48E-03</td>
<td>4.47E-02</td>
<td>Down</td>
<td>1.29E-06</td>
<td>3.08E-05</td>
<td>Down</td>
<td>1.38E-04</td>
<td>1.91E-03</td>
<td>Down</td>
<td>3.54E-09</td>
<td>6.58E-07</td>
<td>Down</td>
<td>5.89E-02</td>
<td>9.89E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Ngenes</td>
<td>regular chow</td>
<td>semisynthetic diet</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>LYSINE DEGRADATION</td>
<td>71</td>
<td>Up 1.32E-02</td>
<td>6.39E-02</td>
<td></td>
</tr>
<tr>
<td>METABOLISM OF XENOBIOTICS BY CYTOCHROME P450</td>
<td>109</td>
<td>Up 6.15E-02</td>
<td>6.88E-01</td>
<td></td>
</tr>
<tr>
<td>MOTOR SIGNALING PATHWAY</td>
<td>54</td>
<td>Up 8.53E-02</td>
<td>2.16E-01</td>
<td></td>
</tr>
<tr>
<td>NEUROTROPHIN SIGNALING PATHWAY</td>
<td>140</td>
<td>Up 8.78E-02</td>
<td>2.16E-01</td>
<td></td>
</tr>
<tr>
<td>NUCLEOTIDE EXCISION REPAIR</td>
<td>46</td>
<td>Up 1.74E-02</td>
<td>7.10E-02</td>
<td></td>
</tr>
<tr>
<td>PS3 SIGNALING PATHWAY</td>
<td>89</td>
<td>Up 3.71E-02</td>
<td>1.21E-01</td>
<td></td>
</tr>
<tr>
<td>PANCREATIC CANCER</td>
<td>83</td>
<td>Up 7.95E-02</td>
<td>2.08E-01</td>
<td></td>
</tr>
<tr>
<td>RENAL CELL CARCINOMA</td>
<td>75</td>
<td>Up 2.85E-02</td>
<td>1.00E-01</td>
<td></td>
</tr>
<tr>
<td>RNA DEGRADATION</td>
<td>58</td>
<td>Up 2.33E-02</td>
<td>8.35E-02</td>
<td></td>
</tr>
<tr>
<td>T CELL RECEPTOR SIGNALING PATHWAY</td>
<td>126</td>
<td>Up 2.62E-01</td>
<td>4.20E-01</td>
<td></td>
</tr>
<tr>
<td>VEGF SIGNALING PATHWAY</td>
<td>72</td>
<td>Up 2.63E-01</td>
<td>4.20E-01</td>
<td></td>
</tr>
<tr>
<td>ALPHA LINOLENIC ACID METABOLISM</td>
<td>16</td>
<td>Up 1.26E-01</td>
<td>2.75E-01</td>
<td></td>
</tr>
<tr>
<td>B CELL RECEPTOR SIGNALING PATHWAY</td>
<td>104</td>
<td>Up 1.75E-02</td>
<td>7.10E-02</td>
<td></td>
</tr>
<tr>
<td>BUTANOATE METABOLISM</td>
<td>63</td>
<td>Up 2.09E-02</td>
<td>7.89E-02</td>
<td></td>
</tr>
<tr>
<td>ETHER LIPID METABOLISM</td>
<td>25</td>
<td>Up 3.83E-03</td>
<td>2.85E-02</td>
<td></td>
</tr>
<tr>
<td>FC GAMMA R MEDIATED PHAGOCYTOSIS</td>
<td>109</td>
<td>Up 4.09E-02</td>
<td>1.24E-01</td>
<td></td>
</tr>
<tr>
<td>SPUCOSOME</td>
<td>165</td>
<td>Up 5.93E-03</td>
<td>3.80E-02</td>
<td></td>
</tr>
<tr>
<td>FATTY ACID METABOLISM</td>
<td>64</td>
<td>Up 2.14E-04</td>
<td>3.06E-03</td>
<td></td>
</tr>
<tr>
<td>ODCYTE MEIOSIS</td>
<td>107</td>
<td>Up 3.41E-02</td>
<td>1.15E-01</td>
<td></td>
</tr>
<tr>
<td>PROPANOATE METABOLISM</td>
<td>55</td>
<td>Up 2.67E-03</td>
<td>2.26E-02</td>
<td></td>
</tr>
<tr>
<td>PYRIMIDINE METABOLISM</td>
<td>103</td>
<td>Up 3.08E-04</td>
<td>3.81E-03</td>
<td></td>
</tr>
<tr>
<td>RNA POLYMERASE</td>
<td>28</td>
<td>Up 7.48E-03</td>
<td>4.35E-02</td>
<td></td>
</tr>
<tr>
<td>FOLATE BIOSYNTHESIS</td>
<td>10</td>
<td>Up 4.66E-04</td>
<td>5.42E-03</td>
<td></td>
</tr>
<tr>
<td>CELL CYCLE</td>
<td>125</td>
<td>Up 1.29E-01</td>
<td>2.79E-01</td>
<td></td>
</tr>
<tr>
<td>CHRONIC MYELOID LEUKEMIA</td>
<td>83</td>
<td>Up 3.39E-01</td>
<td>4.89E-01</td>
<td></td>
</tr>
<tr>
<td>DRUG METABOLISM OTHER ENZYMES</td>
<td>75</td>
<td>Up 4.28E-01</td>
<td>5.77E-01</td>
<td></td>
</tr>
<tr>
<td>EPITHELIAL CELL SIGNALING IN HELICOBACTER PYLORI INFECTION</td>
<td>88</td>
<td>Up 1.38E-01</td>
<td>2.86E-01</td>
<td></td>
</tr>
<tr>
<td>GALACTOSE METABOLISM</td>
<td>42</td>
<td>Up 2.98E-01</td>
<td>4.55E-01</td>
<td></td>
</tr>
<tr>
<td>GIAXA</td>
<td>66</td>
<td>Up 5.01E-01</td>
<td>6.62E-01</td>
<td></td>
</tr>
<tr>
<td>LEUKOCYTE TRANSENDOTHELIAL MIGRATION</td>
<td>122</td>
<td>Up 5.25E-01</td>
<td>6.69E-01</td>
<td></td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Ngenes</td>
<td>regular chow</td>
<td>direction</td>
<td>p-value</td>
<td>FDR</td>
<td>semisynthetic diet</td>
<td>direction</td>
<td>p-value</td>
<td>FDR</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>--------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>NATURAL KILLER CELL-MEDIATED CYTOTOXICITY</td>
<td>132</td>
<td>Up</td>
<td>7.57E-01</td>
<td>8.41E-01</td>
<td></td>
<td>Up</td>
<td>7.86E-01</td>
<td>2.12E-02</td>
<td></td>
</tr>
<tr>
<td>NITROGEN METABOLISM</td>
<td>20</td>
<td>Down</td>
<td>3.74E-02</td>
<td>1.09E-01</td>
<td></td>
<td>Down</td>
<td>4.57E-02</td>
<td>1.12E-02</td>
<td></td>
</tr>
<tr>
<td>NON SMALL CELL LUNG CANCER</td>
<td>62</td>
<td>Up</td>
<td>4.11E-02</td>
<td>2.25E-02</td>
<td></td>
<td>Up</td>
<td>8.90E-02</td>
<td>2.57E-02</td>
<td></td>
</tr>
<tr>
<td>PATHOGENIC ESCHERICHIA COLI INFECTION</td>
<td>87</td>
<td>Up</td>
<td>3.00E-01</td>
<td>1.20E-01</td>
<td></td>
<td>Up</td>
<td>2.91E-02</td>
<td>3.45E-02</td>
<td></td>
</tr>
<tr>
<td>PENTOSE AND GLUCURONATE INTERCONVERSIONS</td>
<td>39</td>
<td>Up</td>
<td>4.22E-02</td>
<td>1.17E-01</td>
<td></td>
<td>Up</td>
<td>4.08E-01</td>
<td>5.08E-01</td>
<td></td>
</tr>
<tr>
<td>PROGESTERONE MEDATED OOCYTE MATURATION</td>
<td>84</td>
<td>Up</td>
<td>1.76E-02</td>
<td>8.79E-02</td>
<td></td>
<td>Up</td>
<td>9.97E-02</td>
<td>2.29E-02</td>
<td></td>
</tr>
<tr>
<td>RETINOBLASTOMA</td>
<td>95</td>
<td>Up</td>
<td>5.48E-01</td>
<td>8.50E-01</td>
<td></td>
<td>Down</td>
<td>1.32E-02</td>
<td>3.03E-02</td>
<td></td>
</tr>
<tr>
<td>RIBOFLOVIN METABOLISM</td>
<td>18</td>
<td>Up</td>
<td>2.04E-02</td>
<td>7.89E-02</td>
<td></td>
<td>Up</td>
<td>9.44E-03</td>
<td>3.98E-02</td>
<td></td>
</tr>
<tr>
<td>SNAE INTERACTIONS IN VESICULAR TRANSPORT</td>
<td>36</td>
<td>Up</td>
<td>1.86E-01</td>
<td>3.21E-01</td>
<td></td>
<td>Up</td>
<td>6.74E-02</td>
<td>2.81E-02</td>
<td></td>
</tr>
<tr>
<td>DNA REPLICATION</td>
<td>37</td>
<td>Down</td>
<td>9.73E-02</td>
<td>4.54E-02</td>
<td></td>
<td>Down</td>
<td>6.11E-02</td>
<td>7.13E-02</td>
<td></td>
</tr>
<tr>
<td>GLYCOSYLYS GLUCONEOGENESIS</td>
<td>79</td>
<td>Up</td>
<td>1.76E-00</td>
<td>2.33E-01</td>
<td></td>
<td>Up</td>
<td>5.47E-02</td>
<td>1.34E-02</td>
<td></td>
</tr>
<tr>
<td>PURINE METABOLISM</td>
<td>159</td>
<td>Up</td>
<td>8.96E-02</td>
<td>6.91E-02</td>
<td></td>
<td>Up</td>
<td>7.34E-02</td>
<td>1.60E-02</td>
<td></td>
</tr>
<tr>
<td>SLEEPING CUBED METABOLISM</td>
<td>46</td>
<td>Up</td>
<td>8.92E-02</td>
<td>3.64E-02</td>
<td></td>
<td>Up</td>
<td>2.08E-02</td>
<td>6.78E-02</td>
<td></td>
</tr>
<tr>
<td>PENTOSE PHOSPHATE PATHWAY</td>
<td>31</td>
<td>Up</td>
<td>7.52E-03</td>
<td>4.74E-02</td>
<td></td>
<td>Up</td>
<td>5.91E-02</td>
<td>2.05E-02</td>
<td></td>
</tr>
<tr>
<td>ARACHIDONIC ACID METABOLISM</td>
<td>91</td>
<td>Up</td>
<td>8.08E-01</td>
<td>9.90E-01</td>
<td></td>
<td>Up</td>
<td>8.78E-02</td>
<td>3.65E-02</td>
<td></td>
</tr>
<tr>
<td>BASAL CELL CARCONOMA</td>
<td>42</td>
<td>Down</td>
<td>6.41E-01</td>
<td>6.91E-02</td>
<td></td>
<td>Down</td>
<td>7.30E-02</td>
<td>6.02E-02</td>
<td></td>
</tr>
<tr>
<td>BASAL TRANSCRIPTION FACTORS</td>
<td>32</td>
<td>Up</td>
<td>8.34E-02</td>
<td>2.14E-01</td>
<td></td>
<td>Up</td>
<td>7.24E-02</td>
<td>6.28E-02</td>
<td></td>
</tr>
<tr>
<td>ERBB SIGNALING PATHWAY</td>
<td>86</td>
<td>Up</td>
<td>8.06E-01</td>
<td>8.84E-01</td>
<td></td>
<td>Up</td>
<td>8.88E-02</td>
<td>1.84E-01</td>
<td></td>
</tr>
<tr>
<td>HOMOLOGOUS RECOMBINATION</td>
<td>27</td>
<td>Up</td>
<td>2.48E-02</td>
<td>6.50E-02</td>
<td></td>
<td>Up</td>
<td>4.31E-02</td>
<td>8.26E-02</td>
<td></td>
</tr>
<tr>
<td>INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION</td>
<td>39</td>
<td>Up</td>
<td>3.02E-01</td>
<td>3.23E-01</td>
<td></td>
<td>Up</td>
<td>8.40E-03</td>
<td>2.57E-02</td>
<td></td>
</tr>
<tr>
<td>MALIGNANT BONE METABOLISM</td>
<td>61</td>
<td>Up</td>
<td>2.57E-01</td>
<td>2.98E-01</td>
<td></td>
<td>Up</td>
<td>5.12E-02</td>
<td>1.31E-02</td>
<td></td>
</tr>
<tr>
<td>SMALL CELL LUNG CANCER</td>
<td>115</td>
<td>Up</td>
<td>2.99E-02</td>
<td>3.20E-01</td>
<td></td>
<td>Up</td>
<td>1.72E-02</td>
<td>2.59E-02</td>
<td></td>
</tr>
<tr>
<td>STARCH AND SUCROSE METABOLISM</td>
<td>56</td>
<td>Up</td>
<td>8.42E-02</td>
<td>1.28E-01</td>
<td></td>
<td>Up</td>
<td>3.31E-01</td>
<td>4.75E-02</td>
<td></td>
</tr>
<tr>
<td>STEROID BIOSYNTHESIS</td>
<td>20</td>
<td>Down</td>
<td>2.86E-01</td>
<td>6.96E-01</td>
<td></td>
<td>Down</td>
<td>8.19E-01</td>
<td>6.46E-01</td>
<td></td>
</tr>
<tr>
<td>TERPEONIC BACKBONE BIOSYNTHESIS</td>
<td>14</td>
<td>Up</td>
<td>2.51E-01</td>
<td>9.90E-01</td>
<td></td>
<td>Up</td>
<td>9.00E-01</td>
<td>9.51E-01</td>
<td></td>
</tr>
<tr>
<td>AMINO ACYlated NUCLEOTIDE METABOLISM</td>
<td>60</td>
<td>Up</td>
<td>3.42E-02</td>
<td>2.35E-01</td>
<td></td>
<td>Up</td>
<td>3.57E-02</td>
<td>9.73E-02</td>
<td></td>
</tr>
<tr>
<td>BETA ALANINE METABOLISM</td>
<td>37</td>
<td>Up</td>
<td>3.39E-02</td>
<td>1.28E-01</td>
<td></td>
<td>Up</td>
<td>5.18E-02</td>
<td>3.13E-02</td>
<td></td>
</tr>
<tr>
<td>LIMONENID AND PINENDE DEGRADATION</td>
<td>18</td>
<td>Up</td>
<td>2.51E-02</td>
<td>6.97E-02</td>
<td></td>
<td>Up</td>
<td>7.86E-02</td>
<td>1.70E-02</td>
<td></td>
</tr>
<tr>
<td>NGLYCAN BIOSYNTHESIS</td>
<td>45</td>
<td>Up</td>
<td>3.95E-02</td>
<td>1.12E-01</td>
<td></td>
<td>Up</td>
<td>6.97E-02</td>
<td>2.71E-02</td>
<td></td>
</tr>
<tr>
<td>NEUROACTIVE LIAND RECEPTOR INTERACTION</td>
<td>143</td>
<td>Down</td>
<td>1.74E-02</td>
<td>2.58E-02</td>
<td></td>
<td>Down</td>
<td>4.52E-02</td>
<td>3.08E-02</td>
<td></td>
</tr>
<tr>
<td>KEGG pathway</td>
<td>Ngenes</td>
<td>regular chow</td>
<td>semisynthetic diet</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>GLYCOAMINOGLYCAN BIOSYNTHESIS</td>
<td>20</td>
<td>Up 7.28E-01</td>
<td>Up 6.48E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOAMINOGLYCAN BIOSYNTHESIS</td>
<td>13</td>
<td>Down 7.60E-01</td>
<td>Down 6.47E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOAMINOGLYCAN BIOSYNTHESIS</td>
<td>15</td>
<td>Up 2.05E-01</td>
<td>Up 5.46E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOSPHINGOLIPID BIOSYNTHESIS</td>
<td>12</td>
<td>Down 6.13E-01</td>
<td>Down 6.78E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOSPHINGOLIPID BIOSYNTHESIS</td>
<td>19</td>
<td>Down 9.96E-01</td>
<td>Down 3.27E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOSPHINGOLIPID BIOSYNTHESIS</td>
<td>20</td>
<td>Up 1.53E-01</td>
<td>Up 2.60E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOSPHINGOLIPID BIOSYNTHESIS</td>
<td>98</td>
<td>Up 9.62E-01</td>
<td>Up 1.64E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOSPHINGOLIPID BIOSYNTHESIS</td>
<td>47</td>
<td>Down 5.45E-01</td>
<td>Down 4.43E-01</td>
<td></td>
</tr>
<tr>
<td>GLYCOSPHINGOLIPID BIOSYNTHESIS</td>
<td>92</td>
<td>Down 3.21E-01</td>
<td>Down 6.86E-01</td>
<td></td>
</tr>
<tr>
<td>OLFACTORY TRANSDUCTION</td>
<td>30</td>
<td>Up 1.44E-01</td>
<td>Up 3.17E-01</td>
<td></td>
</tr>
<tr>
<td>OXIDATIVE CARBOXYLATE METABOLISM</td>
<td>94</td>
<td>Down 4.28E-02</td>
<td>Down 2.52E-01</td>
<td></td>
</tr>
<tr>
<td>INOSITOL PHOSPHATE METABOLISM</td>
<td>52</td>
<td>Up 3.11E-01</td>
<td>Up 2.66E-01</td>
<td></td>
</tr>
<tr>
<td>JAK STAT SIGNALING PATHWAY</td>
<td>112</td>
<td>Up 9.93E-01</td>
<td>Up 4.19E-01</td>
<td></td>
</tr>
<tr>
<td>LONG TERM DEPRESSION</td>
<td>70</td>
<td>Down 4.06E-01</td>
<td>Down 6.69E-01</td>
<td></td>
</tr>
<tr>
<td>MAPK SIGNALING PATHWAY</td>
<td>257</td>
<td>Up 7.19E-01</td>
<td>Up 7.38E-01</td>
<td></td>
</tr>
<tr>
<td>MATURE ONSET DIABETES OF THE YOUNG</td>
<td>15</td>
<td>Down 9.06E-01</td>
<td>Down 4.44E-01</td>
<td></td>
</tr>
<tr>
<td>MELANOMA</td>
<td>96</td>
<td>Down 6.47E-01</td>
<td>Down 4.28E-01</td>
<td></td>
</tr>
<tr>
<td>MELANOMA</td>
<td>70</td>
<td>Down 6.11E-01</td>
<td>Down 3.74E-01</td>
<td></td>
</tr>
<tr>
<td>MISSMATCH REPAIR</td>
<td>23</td>
<td>Up 3.13E-01</td>
<td>Up 8.14E-01</td>
<td></td>
</tr>
<tr>
<td>NICOTINATE AND NICOTINAMIDE METABOLISM</td>
<td>27</td>
<td>Up 2.90E-01</td>
<td>Up 1.11E-01</td>
<td></td>
</tr>
<tr>
<td>NOD LIKE RECEPTOR SIGNALING PATHWAY</td>
<td>77</td>
<td>Up 6.75E-01</td>
<td>Down 1.97E-01</td>
<td></td>
</tr>
<tr>
<td>NON HOMOLOGOUS END JOINING</td>
<td>12</td>
<td>Down 6.83E-01</td>
<td>Down 6.50E-01</td>
<td></td>
</tr>
<tr>
<td>NOTCH SIGNALING PATHWAY</td>
<td>46</td>
<td>Up 4.60E-01</td>
<td>Down 7.35E-01</td>
<td></td>
</tr>
<tr>
<td>O GLYCOLYSIS</td>
<td>23</td>
<td>Up 9.29E-01</td>
<td>Down 2.17E-01</td>
<td></td>
</tr>
<tr>
<td>OLFATORY TRANSDUCTION</td>
<td>36</td>
<td>Down 5.68E-01</td>
<td>Down 2.44E-01</td>
<td></td>
</tr>
<tr>
<td>ONE CARBON POOL BY FOLATE</td>
<td>19</td>
<td>Up 1.78E-01</td>
<td>Down 6.23E-01</td>
<td></td>
</tr>
<tr>
<td>PATHWAYS IN CANCER</td>
<td>352</td>
<td>Down 7.12E-01</td>
<td>Down 2.17E-01</td>
<td></td>
</tr>
<tr>
<td>PHENYLALANINE METABOLISM</td>
<td>24</td>
<td>Up 1.55E-01</td>
<td>Down 6.02E-01</td>
<td></td>
</tr>
<tr>
<td>PHOSPHATIDYLINOSITOL SIGNALING SYSTEM</td>
<td>68</td>
<td>Up 9.48E-01</td>
<td>Down 6.35E-01</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Ldlr**: LDL receptor
- **Mc4r**: Melanocortin 4 receptor
- **wt**: Wild type
- **p-value**: Statistical significance

Note: The table represents the p-values for various KEGG pathways comparing regular chow and semisynthetic diet. The p-values are calculated using appropriate statistical tests to determine significant differences in gene expression.
<table>
<thead>
<tr>
<th>KEGG pathway</th>
<th>Ngenes</th>
<th>Direction</th>
<th>p-value</th>
<th>FDR</th>
<th>Direction</th>
<th>p-value</th>
<th>FDR</th>
<th>Direction</th>
<th>p-value</th>
<th>FDR</th>
<th>Direction</th>
<th>p-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valine leucine and isoleucine biosynthesis</td>
<td>13</td>
<td>Up</td>
<td>8.16E-01</td>
<td>8.08E-01</td>
<td>Up</td>
<td>8.66E-01</td>
<td>8.58E-01</td>
<td>Up</td>
<td>7.86E-01</td>
<td>7.77E-01</td>
<td>Up</td>
<td>7.86E-01</td>
<td>7.77E-01</td>
</tr>
<tr>
<td>Viral myocarditis</td>
<td>86</td>
<td>Down</td>
<td>8.43E-01</td>
<td>8.35E-01</td>
<td>Up</td>
<td>8.43E-01</td>
<td>8.35E-01</td>
<td>Up</td>
<td>8.43E-01</td>
<td>8.35E-01</td>
<td>Up</td>
<td>8.43E-01</td>
<td>8.35E-01</td>
</tr>
<tr>
<td>Wnt signaling pathway</td>
<td>146</td>
<td>Down</td>
<td>8.91E-01</td>
<td>8.83E-01</td>
<td>Up</td>
<td>8.91E-01</td>
<td>8.83E-01</td>
<td>Up</td>
<td>8.91E-01</td>
<td>8.83E-01</td>
<td>Up</td>
<td>8.91E-01</td>
<td>8.83E-01</td>
</tr>
<tr>
<td>Ventricular cardiomyopathy quality</td>
<td>83</td>
<td>Down</td>
<td>7.36E-02</td>
<td>7.28E-02</td>
<td>Up</td>
<td>7.36E-02</td>
<td>7.28E-02</td>
<td>Up</td>
<td>7.36E-02</td>
<td>7.28E-02</td>
<td>Up</td>
<td>7.36E-02</td>
<td>7.28E-02</td>
</tr>
<tr>
<td>Autoimmune thyroid disease</td>
<td>43</td>
<td>Down</td>
<td>5.78E-02</td>
<td>5.70E-02</td>
<td>Up</td>
<td>5.78E-02</td>
<td>5.70E-02</td>
<td>Up</td>
<td>5.78E-02</td>
<td>5.70E-02</td>
<td>Up</td>
<td>5.78E-02</td>
<td>5.70E-02</td>
</tr>
<tr>
<td>Calcium signaling pathway</td>
<td>141</td>
<td>Down</td>
<td>4.49E-02</td>
<td>4.41E-02</td>
<td>Up</td>
<td>4.49E-02</td>
<td>4.41E-02</td>
<td>Up</td>
<td>4.49E-02</td>
<td>4.41E-02</td>
<td>Up</td>
<td>4.49E-02</td>
<td>4.41E-02</td>
</tr>
<tr>
<td>Glycine serine and threonine metabolism</td>
<td>38</td>
<td>Up</td>
<td>5.39E-03</td>
<td>5.32E-03</td>
<td>Up</td>
<td>5.39E-03</td>
<td>5.32E-03</td>
<td>Up</td>
<td>5.39E-03</td>
<td>5.32E-03</td>
<td>Up</td>
<td>5.39E-03</td>
<td>5.32E-03</td>
</tr>
</tbody>
</table>

Metabolism

ARVC

VASOPRESSIN REGULATED WATER VASCULAR SMOOTH MUSCLE METABOLISM METABOLISM
<table>
<thead>
<tr>
<th>KEGG pathway</th>
<th>Ngenes</th>
<th>Direction</th>
<th>p-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEROxisome</td>
<td>146</td>
<td>Up</td>
<td>9.67E-02</td>
<td>2.31E-01</td>
<td>Up</td>
<td>2.03E-02</td>
<td>1.62E-01</td>
<td>Up</td>
<td>5.07E-02</td>
<td>1.54E-01</td>
<td>Up</td>
<td>6.22E-02</td>
<td>1.48E-01</td>
<td>Up</td>
<td>3.00E-02</td>
<td>6.59E-02</td>
<td>Up</td>
<td>1.77E-01</td>
<td>2.54E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTEIN EXPORT</td>
<td>28</td>
<td>Up</td>
<td>1.15E-04</td>
<td>1.78E-03</td>
<td>Up</td>
<td>3.80E-01</td>
<td>3.32E-01</td>
<td>Up</td>
<td>4.17E-01</td>
<td>5.90E-01</td>
<td>Up</td>
<td>1.52E-01</td>
<td>2.72E-01</td>
<td>Up</td>
<td>1.44E-01</td>
<td>2.16E-01</td>
<td>Up</td>
<td>9.42E-02</td>
<td>1.58E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE I DIABETES MELLITUS</td>
<td>53</td>
<td>Down</td>
<td>1.77E-03</td>
<td>1.73E-02</td>
<td>Up</td>
<td>3.74E-01</td>
<td>5.27E-01</td>
<td>Down</td>
<td>3.19E-01</td>
<td>4.83E-01</td>
<td>Up</td>
<td>6.25E-01</td>
<td>7.13E-01</td>
<td>Down</td>
<td>2.40E-01</td>
<td>3.26E-01</td>
<td>Down</td>
<td>5.16E-01</td>
<td>5.82E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYROSINE METABOLISM</td>
<td>57</td>
<td>Up</td>
<td>3.52E-03</td>
<td>2.72E-02</td>
<td>Up</td>
<td>2.06E-02</td>
<td>7.99E-02</td>
<td>Up</td>
<td>2.21E-01</td>
<td>3.68E-01</td>
<td>Up</td>
<td>7.45E-01</td>
<td>8.34E-01</td>
<td>Up</td>
<td>2.76E-01</td>
<td>3.58E-01</td>
<td>Up</td>
<td>5.16E-01</td>
<td>5.82E-01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>