Matlab processing script for generating heat maps:

Listed below is the code and documentation for producing heat map topographic representations of spinal labeling.

```matlab
function [densityImageS1, densityImageS2, densityImageSmoothS1, densityImageSmoothS2] = Analyze(imageCellSeries1, correctionFactorSeries1, imageCellSeries2, correctionFactorSeries2, boxSize)

% Note: the function assumes that ALL image files are of the SAME dimensions
% Parameters:
% imagesCellSeries1: a list of images from either the same animal or from
% the same group from different animals.
% correctionFactorSeries1: a list of integers representing the correction
% factor. The order of the list corresponds to the order of the images in
% the imageCellSeries1. If a correction factor does not exist, put in the
% value of "1" (since number/1 = number)
% For imageCellSeries2 and correctionFactorSeries2 see explanation above
% boxSize: the length, in pixels, of the SIDE of the square on which
% averaging ACROSS IMAGES will take place (vs. averaging each pixel with
% its 8 neighbors. VERY important difference...).
%
% Syntax is as follows:
% [densityImageS1, densityImageS2, densityImageSmoothS1, densityImageSmoothS2] = Analyze({mouse1Image1, mouse1Image2, mouse1Image3...}, {0.52, 0.69, 0.66, ...},
% {mouseImage1, mouseImage2, mouseImage3,...}, {1.25, 1.53, 1.14,...}, 80)
% then, to view images, type:
% imagesc(densityImageSmoothS1)
% etc

flattenedImagesSeries1 = flattenCellsImages(imageCellSeries1, correctionFactorSeries1);
flattenedImagesSeries2 = flattenCellsImages(imageCellSeries2, correctionFactorSeries2);

% H = fspecial('gaussian',40,20);
% for currImg=1:size(flattenedImagesSeries1,2)
%   flattenedImagesSeries1(currImg) = imfilter(flattenedImagesSeries1(currImg),H,'replicate');
% end

[densityImageS1, tTestMatrixS1] = computeDensity(flattenedImagesSeries1, boxSize);
```
[densityImageS2, tTestMatrixS2] = computeDensity(flattenedImagesSeries2, boxSize);
% works, but excluded from script for now:
% figure, imagesc(densityImageS1);
% title('Series 1, average distribution over the entire series (correction factor applied)');
% figure, imagesc(densityImageS2);
% title('Series 2, average distribution over the entire series (correction factor applied)');
%
% aveDensImageS1 = computeNeighboringAverage(densityImageS1);
% aveDensImageS2 = computeNeighboringAverage(densityImageS2);

densityImageSmoothS1 = aveDensImageS1;
densityImageSmoothS2 = aveDensImageS2;
% figure, imagesc(aveDensImageS1);
% title('Series 1, after nearest-neighbor (per pixel) average');
% figure, imagesc(aveDensImageS2);
% title('Series 2, after nearest-neighbor (per pixel) average');