Effective hard-sphere model (EHM) and its analytical results

Theory

Intermolecular interactions have been introduced by Minton et. al. [1–4] in the effective hard-sphere model (EHM), where the size of effective particles depends on the magnitude of intermolecular interactions (Fig.S3).

![Figure S3. Association of two crystallins in macromolecular crowding for EHM. Sketch of two crystallins as reactants polymerising into a dimer as product for effective hard-sphere model (EHM), where dashed lines and blue spheres respectively represent the actual and effective sizes of crystallins.](image)

Since the SPT only gives γ for hard-spheres, we implement EHM to introduce attractive interaction between crystallins. According to the approximation of EHM [1–3], if the interaction between particles is pairwise additive and isotropic [5], we have

$$\phi' = \frac{cB_2}{8M},$$

(1)

where ϕ' is effective packing fraction, c is protein concentration and $M = 21kDa$ is the molar mass of crystallins. The second virial coefficient, B_2, reflects the pair interaction between crystallins:

$$B_2 = 4\pi N_a \int_0^\infty \left[1 - e^{-U(r)/kT} \right] r^2 dr,$$

(2)

where $U(r)$ is the interactive potential, r is the distance between two molecules, N_a is Avogadro number and k is Boltzmann constant.

Therefore, ϕ' changes as a function of interaction between particles. The larger the attraction between proteins, the smaller the value of ϕ' (see Fig.S3). By substituting ϕ' for ϕ in Eq.5 in our main text, we obtain the activity coefficient of crystallins for EHM.

References

