S3 Appendix

A tangent based method.

The integrations required to obtain the lower bound of the marginal log-likelihood are non-trivial and no closed form equations for \(q(z, \alpha, \beta) \) exists. Additional variational parameters \(\mathbf{v} = (\mathbf{a}^T, \mathbf{b}^T)^T \) are now introduced such that a lower bound of the marginal log-likelihood is found using

\[
\ln p(y) \geq \sum_z \int q_v(z) q_v(\alpha) q_v(\beta) \ln \left(\frac{p_v(y, z, \alpha, \beta)}{q_v(z) q_v(\alpha) q_v(\beta)} \right) d\alpha d\beta. \tag{1}
\]

\(\mathbf{a} = (\mathbf{a}_1^T, \ldots, \mathbf{a}_n^T)^T \) where each of the \(\mathbf{a}_i \) vectors are of length \(K_i \) while \(\mathbf{b} \) is of length \(n \). \(p_v(y, z, \alpha, \beta) \) should be viewed as a lower bound for \(p(y, z, \alpha, \beta) \) while \(q_v(z) \), \(q_v(\alpha) \) and \(q_v(\beta) \) indicates that the distributions of \(z, \alpha \) and \(\beta \) are functions of \(\mathbf{v} \) which could have different functional forms.

The function \(f(x) = -\ln(1 + e^x) \) can be presented as the maximum of a family of parabolas \(^1\) where

\[
-\ln(1 + e^x) = \max_{\xi \in \mathbb{R}} \left(A(\xi) x^2 - \frac{1}{2} x + C(\xi) \right) \text{ for all } x \in \mathbb{R},
\]

\[
A(\xi) = -\tanh \left(\frac{1}{2} \xi \right) / (4\xi),
\]

\[
C(\xi) = \frac{1}{2} \xi - \ln(1 + e^\xi) + \xi \tanh \left(\frac{1}{2} \xi \right) / 4.
\]

A lower bound for the quantities \(b(W\alpha) \) and \(b(X\beta) \) are obtained by using the above result such
that

\[
\ln p \geq y^T \text{diag}(\tilde{z})W\alpha + z^T X\beta + \ln \pi(\alpha, \beta) + \tilde{z}^T \left(A(a) \odot (W\alpha)^2 - \frac{1}{2}W\alpha + C(a) \right) + 1^T_n \left(A(b) \odot (X\beta)^2 - \frac{1}{2}X\beta + C(b) \right) \\
\geq -\frac{1}{2} \alpha^T B_1 \alpha + B_2 \alpha - \frac{1}{2} \beta^T D_1 \beta + D_2 \beta + \tilde{z}^T C(a) + 1^T_n C(b) + E. \tag{2}
\]

From equation (2) it is apparent that both \(q_{\nu}(\alpha) \) and \(q_{\nu}(\beta) \) are multivariate Gaussian distributions; specifically \(q_{\nu}(\alpha) \sim N(B_1^{-1}B_2^T, B_1^{-1}) \) and \(q_{\nu}(\beta) \sim N(D_1^{-1}D_2^T, D_1^{-1}) \). Using various known matrix
identities regarding multivariate Gaussian distributions it can be shown that

\[c_i^{(T)} = x_i \mu_\beta + 1_k^T C(a_i) - \frac{1}{2} 1_k^T w_i \mu_\alpha + \text{tr} (d_i) \]

(3)

where \(d_i = w_i^T \text{diag}(A(a_i)) w_i (\Sigma_\alpha + \mu_\alpha \mu_\alpha^T) \). One way of estimating the variational parameters is to numerically maximise the right hand side of equation (1) with respect to \(K \). This approach might be feasible although it is not attempted here. Similar to [1] we however devise an Tangent algorithm in order to estimate \(v \).

Estimation of the variational parameters - The E-step

Denote the ‘new variational parameters’ as \(a_{(N)} \) and \(b_{(N)} \) respectively. Further denote \(v^{(new)} \) as \(N \) and \(v^{(old)} \) as \(O \) for notational convenience below. Treating \(y, z, \alpha, \beta \) as the ‘complete data’, the E-step of the Tangent algorithm is found by calculating the conditional expectation of the right hand side of equation (2) which equals \(Q(N|O) = T_{\alpha,N} + T_{\beta,N} + E \) where

\[T_{\alpha,N} = \text{tr} \left(-\frac{1}{2} B_{1,N} (\Sigma_{\alpha,O} + \mu_{\alpha,O} \mu_{\alpha,O}^T) \right) + B_{2} \mu_{\alpha,O} + B_{3,N} \]
\[T_{\beta,N} = \text{tr} \left(-\frac{1}{2} D_{1,N} (\Sigma_{\beta,O} + \mu_{\beta,O} \mu_{\beta,O}^T) \right) + D_{2} \mu_{\beta,O} + D_{3,N}. \]

where

\[B_{3,N} = \tilde{p}^T C(a_N) - \frac{1}{2} (\mu_\alpha^0)^T (\Sigma_\alpha^0)^{-1} (\mu_\alpha^0) \]
\[D_{3,N} = 1_n^T C(b_N) - \frac{1}{2} (\mu_\beta^0)^T (\Sigma_\beta^0)^{-1} (\mu_\beta^0). \]
Note that here the additional subscript N indicates the dependence on the ‘new variational parameters’ which are estimated in the M-step, while subscript O indicates the dependence on the ‘old variational parameters’.

Estimation of the variational parameters - The M-step

Since $Q(N|O)$ separates in two functions of which one only depends on $a_{(N)}$ and the second only depends on $b_{(N)}$, it can be shown that

\[
(a_{(N)})^2 = \text{diagonal} \left(W \left(\Sigma_{a,O} + \mu_{a,O} \mu_{a,O}^T \right) W^T \right) \quad (4)
\]

\[
(b_{(N)})^2 = \text{diagonal} \left(X \left(\Sigma_{\beta,O} + \mu_{\beta,O} \mu_{\beta,O}^T \right) X^T \right) \quad (5)
\]

References