S1 Appendix

For weighted networks, the generalized clustering coefficient C_{wu} [1] and the global efficiency E_{global} [2] are defined as follows:

\[C_{wu} = \frac{1}{p} \sum_i D_{ii} (D_{ii} - 1) \sum_{j,k} (W_{ij}W_{ik}W_{jk})^{1/3}, \]
\[E_{global} = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{l_{ij}}, \]

where $D_{ii} = \sum_j W_{ij}$ is the degree of vertex i; l_{ij} is the shortest weighted path length between vertices i and j; N denotes the number of vertices in the network. Notice that the subscript ‘wu’ indicates a weighted undirected network.

There are multiple ways of specifying the modularity. One way to define the modularity of a partition of the network into c communities is [3]

\[Q = \sum_{i=1}^c (e_{ii} - a_i^2), \]

where e_{ii} is the fraction of edges with both end vertices in the same community i and a_i is the fraction of ends of edges adjacent to vertices in community i. If we define B_{ij} as the difference between W_{ij} and the expected weight between vertices i and j if edge weights are distributed at random, then the modularity can also be viewed as the normalized summation of B_{ij} over all pairs of i, j that are in the same community.

References

