Installation & execution guide for the grid-based version of optPBN toolbox

The grid-based version of optPBN toolbox can be downloaded from SourceForge at https://sourceforge.net/projects/optpbn. Please type the password ‘SysbioUL’ upon the extraction of the compressed optPBN toolbox (in zip format) if asked.

Once the toolbox is placed on the working directory of a cluster or of a grid-based infrastructure such as Grid'5000, please run the installation file ‘installOptPBN.sh’ e.g., by using the command ‘./installOptPBN.sh’ on Linux operation system. A detailed description of the installation file is provided below.

#1 create the installs and lower level directories, namely for MCR, MPICH2 and LibXML
cd ~ && mkdir installs
mkdir installs/mcr
mkdir installs/mpich2
mkdir installs/libxml2

#2 copy the paradiseo archive into the installs directory and uncompress
cp optPBNInstall/kits/paradiseo-1.1.bz2 installs/ && cd installs
tar xvjf paradiseo-1.1.bz2

#3 uncompress and install mpich2, libxml and gsl(located in the lib subfolder)
cd paradiseo-1.1/lib

tar xvzf mpich2-1.0.3.tar.gz
cd mpich2-1.0.3
./configure --prefix=$HOME/installs/mpich2/ && make && make install
cd .. && tar xvjf libxml2-2.6.0.tar.bz2 && cd libxml2-2.6.0
./configure --prefix=$HOME/installs/libxml2/ && make && make install

! IMPORTANT ! if your system already provides a libxml library, e.g. in /usr/lib, symbolic links should be created instead
in the ~/installs/libxml2/lib directory (modify the symbolic links already present in
~/installs/libxml2/lib to point to the system library)
the ln command can be used to create symbolic links (-s option); overseeing this step might cause the installation to fail!

cd ~/optPBNInstall/kits
tar xvzf gsl-1.15.tar.gz && cd gsl-1.15
./configure --prefix=$HOME/installs
make && make install

4 set environment and variables
echo 'export PATH=$HOME/installs/bin:$HOME/installs/mpich2/bin:$HOME/installs/libxml2/bin/:$PATH' >> ~/.bashrc
echo 'export PATH=$HOME/installs/bin:$HOME/installs/mpich2/bin:$HOME/installs/libxml2/bin/:$PATH' >> ~/.bash_profile
echo 'export LD_LIBRARY_PATH=$HOME/optPBNInstall/workspace/sysb-opt/src/libs:$LD_LIBRARY_PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=$HOME/optPBNInstall/workspace/sysb-opt/src/libs:$LD_LIBRARY_PATH' >> ~/.bash_profile
echo 'export LD_LIBRARY_PATH=$HOME/installs/mcr/v78/runtime/glnxa64:$LD_LIBRARY_PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=$HOME/installs/mcr/v78/runtime/glnxa64:$LD_LIBRARY_PATH' >> ~/.bash_profile
echo "export LD_LIBRARY_PATH=$HOME/optPBNInstall/workspace/sysb-opt/src/libs:$LD_LIBRARY_PATH" >> ~/.bashrc

echo "export MCR_INHIBIT_CTF_LOCK=1" >> ~/.bashrc

echo "export MCR_INHIBIT_CTF_LOCK=1" >> ~/.bash_profile

source ~/.bashrc

echo "MPD_SECRETWORD=secretw" > ~/.mpd.conf

chmod 600 ~/.mpd.conf

#5 install ParadisEO [version 1.1]: EO+MO+MOEO+PEO

cd ~/installs/paradiseo-1.1/paradiseo-eo/build/
rm -fr * && cmake ../ -Dconfig=$HOME/installs/paradiseo-1.1/install.cmake
make

cd ../../paradiseo-mo/build/
rm -fr * && cmake ../ -Dconfig=$HOME/installs/paradiseo-1.1/install.cmake
make

cd ../../paradiseo-moeo/build
rm -fr * && cmake ../ -Dconfig=$HOME/installs/paradiseo-1.1/install.cmake
make

cd ../../paradiseo-peo/build
rm -fr * && cmake ../ -Dconfig=$HOME/installs/paradiseo-1.1/install.cmake
make

#6 install MCR [choose option 1, i.e. Next, and then specify the
/home/{username}/installs/mcr directory, choose Next when prompted, end with Finish]

cd ~/optPBNInstall/kits
chmod +x MCRInstaller.bin
./MCRInstaller.bin -console

#7 compile the project

cd ~/optPBNInstall/workspace/sysb-opt/src/libs/source/example/src
chmod +x compile.grid & & ./compile.grid

cp example.exports libexample.cuf libexample.exports libexample.h libexample.so ../...

cd ~/optPBNInstall/workspace/sysb-opt

make

#8 run once to extract the .ctf contents
cd src
./sysbexample

#9 Grid5000 ONLY:
make a reservation
oarsub –l –l/nodes=10,walltime=0:90

#verify the nodes
cat $OAR_FILE_NODES | uniq > machines
for i in `cat machines`; do oarsh $i 'hostname -f'; done

#start the MPI daemons
mpdboot -n 10 -f machines --rsh=/usr/bin/oarsh

#adjust the schema.xml file if needed as to match the number of resources and run (in this case using 80 processes)
#note that the node indexing starts at 0; the last node has in this case the label 79

#execute MPI and record computational time
{ time mpiexec -n 80 ./sysbexample @alg.param estim_Case_study_4_Extended.mat; } 2>&1 | tee TimeOutput.log

#shutdown the MPI daemons (after complete the optimisation task)
mpdallexit

The installation process is mostly automated. There is only one step (Step #6: Install Matlab Compiler Runtime, MCR) that requires user’s interaction to set the installation path. If you install the toolbox on Grid’5000 (registration for an account required), you can proceed with an example of resources reservation and execution of an optimisation task by following the commands in step #9.