Appendix S2: Program code for multilevel functional data analysis

Program code for the multilevel functional data analysis in «Shape information in repeated glucose curves during pregnancy provided significant physiological information for neonatal outcomes», by Frøslie et al., PLOS ONE, 2014.


```r
# Read spss data from the complete cohort of 1031 women
library(foreign)
spssdata <- read.spss("M:/Art5longitudinalFDA/STORK29.06.2011.sav", use.value.labels = TRUE, to.data.frame = TRUE)
spssdata <- spssdata[order(spssdata$id),]
spssdata$auc1 <- 0.5*(spssdata$g01/2+spssdata$g11+spssdata$g21+spssdata$g31+spssdata$g41/2)
spssdata$auc3 <- 0.5*(spssdata$g03/2+spssdata$g13+spssdata$g23+spssdata$g33+spssdata$g43/2)

# Remove women with premature births or non-complete OGTT data to get the study sample of 884 women and their neonates
spssdata.term.complete.ogtt <- spssdata[spssdata$gest>=37 & is.na(spssdata$gest)==FALSE &
is.na(spssdata$g01*spssdata$g11*spssdata$g21*spssdata$g31*spssdata$g41*spssdata$g03*spssdata$g13*spssdata$g23*spssdata$g33*spssdata$g43)==FALSE,]

# Make the 884x5-dimensional matrix of glucose data (raw data) from visit 1 and the one from visit 3

```
Optimise lambda

loglam <- seq(-30,20,0.05) # Example of alternative range for loglam in case of local minimum (see below)

loglam <- seq(0,20,0.05)
lam <- length(loglam)
dfsave <- rep(NA,lam)
gcvsave <- rep(NA,lam)

for (ilam in 1:lam) {
 Lambda <- 10^loglam[ilam]
 fdParobj <- fdPar(mybasis,2,Lambda)
 smoothlist <- smooth.basis(c(0,30,60,90,120),t(g),fdParobj)
 dfsave[ilam] <- smoothlist$df
 gcvsave[ilam] <- sum(smoothlist$gcv)
}

Optimal value of lambda:

lambdaopt <- 10^loglam[gcvsave==min(gcvsave)] # lambdaopt <- 707.9458

Plots showing how gcv vary with loglambda.
(To ensure that the optimal value is not a local minimum. If so, choose an alternative range for lambda (see above)

X11()
par(mfrow=c(2,3))
plot(loglam,gcvsave,type="l")
plot(loglam,gcvsave,type="l",ylim=c(2200,4000),xlim=c(0,5))
plot(loglam,gcvsave,type="l",ylim=c(2300,2400),xlim=c(2.5,3.2))
abline(h=min(gcvsave),lty=2)
plot(loglam,gcvsave,type="l",ylim=c(2340,2360),xlim=c(2.7,3.1))
abline(h=min(gcvsave),lty=2)

Optimal smoothing of individual glucose curves, according to gcv criterion

fdParobj.opt <- fdPar(mybasis,2,lambdaopt)

g1.smooth <- smooth.basis(c(0,30,60,90,120),t(g1),fdParobj.opt) # These are the correct curves and glucose values
g3.smooth <- smooth.basis(c(0,30,60,90,120),t(g3),fdParobj.opt) # for further analysis
eval.g1 <- t(eval.fd(c(0,30,60,90,120),g1.smooth$fd))
eval.g3 <- t(eval.fd(c(0,30,60,90,120),g3.smooth$fd))
eval.g <- rbind(eval.g1,eval.g3)
eval.error <- g-eval.g

Means of smoothed function values

overallmean.eval <- colMeans(eval.g ,na.rm=TRUE)
visitSpecificmean1.eval <- colMeans(eval.g1 ,na.rm=TRUE)
visitSpecificmean3.eval <- colMeans(eval.g3 ,na.rm=TRUE)
Minimal smoothing of mean curves (means of smoothed function values), to obtain continuous mean curves

```r
fdParobj.m <- fdPar(mybasis, 2, 1)
overallmean.eval.smooth <- smooth.basis(c(0, 30, 60, 90, 120), overallmean.eval, fdParobj.m)
visitspecificmean1.eval.smooth <- smooth.basis(c(0, 30, 60, 90, 120), visitspecificmean1.eval, fdParobj.m)
visitspecificmean3.eval.smooth <- smooth.basis(c(0, 30, 60, 90, 120), visitspecificmean3.eval, fdParobj.m)
```

Plots
```r
X11()
boxplot(eval.error, names=c("0", "30", "60", "90", "120"), ylim=c(-5.5, 5.5), xaxt='n', yaxt='n', ann=FALSE)
X11()
par(mfrow=c(1, 2))
plot(g1.smooth, lty=1, col="black", ylim=c(1, 12), xlab="Time (min)", ylab="Glucose (mmol/l)", main="Smoothed OGTT glucose curves,\n gestational wks 14-16")
plot(visitspecificmean1.eval.smooth, lty=1, col="grey", lwd=2, add=TRUE)
plot(g3.smooth, lty=1, col="black", ylim=c(1, 12), xlab="Time (min)", ylab="Glucose (mmol/l)", main="Smoothed OGTT glucose curves,\n gestational wks 30-32")
plot(visitspecificmean3.eval.smooth, lty=1, col="grey", lwd=2, add=TRUE)
```

Next step: Center the estimated visit 1 and 3 functional values on the visit-specific mean
```r
g1.demeaned <- eval.g1 - matrix(rep(colMeans(eval.g1, na.rm=TRUE), nrow(eval.g1)), nrow=nrow(eval.g1), byrow=TRUE)
g3.demeaned <- eval.g3 - matrix(rep(colMeans(eval.g3, na.rm=TRUE), nrow(eval.g3)), nrow=nrow(eval.g3), byrow=TRUE)
g1and3.demeaned <- cbind(g1.demeaned, g3.demeaned)
big_covariance_v1and3 <- cov(g1and3.demeaned, use="pairwise.complete.obs")
round(big_covariance_v1and3, 2)
big_correlation_v1and3 <- cor(g1and3.demeaned, use="pairwise.complete.obs")
round(big_correlation_v1and3, 2)
```

Multilevel analysis
```r
N <- N_obs
Gt <- (big_covariance_v1and3[1:N , 1:N ]+big_covariance_v1and3[(N+1): (2*N), (N+1): (2*N)])/2
Gb <- (big_covariance_v1and3[1:N , (N+1): (2*N)]+big_covariance_v1and3[(N+1): (2*N), 1:N])/2
Gw <- Gt-Gb
```

Remark: No covariances need here to be smoothed (as compared to the works of Crainiceanu and Di),
as we have smoothed the curves as our data preparation step.

Plots of the estimated Ku and Kx surfaces
```r
X11()
par(mfrow=c(1, 2))
contour(seq(0, 120, 30), seq(0, 120, 30), matrix(Gw, nrow=5, byrow=TRUE), main="Gwds (Original Gt matrix with Gb subtr from all elements.)")
contour(seq(0, 120, 30), seq(0, 120, 30), matrix(Gb, nrow=5, byrow=TRUE), main="Gb (Original Gb matrix with Kx")
```
PCA of the subject-specific level (Gb: Gbetween) and of the subject- and visit-specific level (Gw: Gwithin):

eigen(Gb)
eigen(Gw)

Decide the number of components that are kept at level 1 and 2. A general rule is to stop at the component where
the cumulative percentage of variance explained is greater than 90% and the variance explained by any single component
after is less than 1/N. The number of components are also no less than the pre-determined minimum values for K1 (1) or K2 (1).

Gbpst <- eigen(Gb)$values/sum(eigen(Gb)$values[1:4])
Gwpst <- eigen(Gw)$values/sum(eigen(Gw)$values)
K1 <- max(which(cumsum(Gbpst) < 0.9 | Gbpst > 1/N) + 1, 1) # K1 = 2
K2 <- max(which(cumsum(Gwpst) < 0.9 | Gwpst > 1/N) + 1, 1) # K2 = 3

Obtain the restricted number of level 1 and 2 eigenfunctions for Gw and Gb (some are flipped due to the physiological interpretation)
dim.space_b <- 2 # level 1 (subject-specific)
psi_1 <- cbind(-eigen(Gb)$vectors[,1],-eigen(Gb)$vectors[,2])
dim.space_w <- 3 # level 2 (subject/visit-specific)
psi_2 <- cbind(-eigen(Gw)$vectors[,1],-eigen(Gw)$vectors[,2],eigen(Gw)$vectors[,3])

Plots of the FPC harmonics
X11()
par(mfrow=c(1,2))
plot(seq(0,120,30),psi_1[,1],type="l",ylim=c(-0.7,0.8),col="dark blue",main=paste("Subj FPC",1:dim.space_b," based on Gb, % variance:",round(Gbpst[1:dim.space_b],2)),ylab="",xlab="")
lines(seq(0,120,30),psi_1[,1],type="l",ylim=c(-1,1),lw=12,col="dark blue")
lines(seq(0,120,30),psi_1[,2],lw=6,col="blue")
X11()
plot(seq(0,120,30),psi_2[,1],type="l",ylim=c(-0.7,0.8),col="dark blue",main=paste("Subj/visit FPC",1:dim.space_w," based on Gw, % variance:",round(Gwpst[1:dim.space_w],2)),ylab="",xlab="")
lines(seq(0,120,30),psi_2[,1],type="l",ylim=c(-1,1),lw=12,col="dark blue")
lines(seq(0,120,30),psi_2[,2],lw=6,col="blue")
lines(seq(0,120,30),psi_2[,3],lw=2,col="light blue")

Minimal smoothing of FPC vectors, to obtain continuous FPC curves in the plots
(Necessary due to the small number of glucose measurements per woman)

psi_subj.smooth <- smooth.basis(c(0,30,60,90,120),psi_subj,fdParobj.m)
psi_subvis.smooth.w <- smooth.basis(c(0,30,60,90,120),psi_subvis_w,fdParobj.m)

Plots of the (minimally smoothed) FPC harmonics
X11()
par(mfrow=c(1,2))
plot(psi_subj.smooth) # Empirical basis functions, subject level
plot(psi_subvis.smooth.w) # Empirical basis functions, subj/visit level
Plot of mean curves + or - 2*SD of FPCs

```r
par(mfrow=c(3,3))
evb <- eigen(Gb)$values/sum(eigen(Gb)$values[1:4])
evgw <- eigen(Gw)$values/sum(eigen(Gw)$values[1:5])
for(i in 1:dim.space_b){
  points(6*seq(0:20)-6, eval.fd(6*seq(0:20)-6, smooth.basis(c(0,30,60,90,120),(overallmean.eval.smooth$fd, col="grey", ylim=c(2.8,8.5), lw=6,ylab=paste("Glucose (mmol/l)",xlab="Time (min)", main=paste("Overall mean \n Subject-specific FPC",i))
  points(6*seq(0:20)-6, eval.fd(6*seq(0:20)-6, smooth.basis(c(0,30,60,90,120),(overallmean.eval.smooth$fd, col="grey", ylim=c(2.8,8.5), lw=6,ylab=paste("Glucose (mmol/l)",xlab="Time (min)", main=paste("Mean, wks 14-16 \n Subj- and visit-specific FPC",i))
  points(6*seq(0:20)-6, eval.fd(6*seq(0:20)-6, smooth.basis(c(0,30,60,90,120),(visitspecificmean1.eval.smooth$fd, col="grey", ylim=c(2.8,8.5), lw=6,ylab=paste("Glucose (mmol/l)",xlab="Time (min)", main=paste("Mean, wks 30-32 \n Subj- and visit-specific FPC",i))
```

WINBUGS

dim.space_b <- 2 # Antall egenfunksjoner, level 1 subject-specific

dim.space_w <- 3 # Antall egenfunksjoner, level 2 subject/visit-specific

psi_subj <- psi_subj

psi_subvis <- psi_subvis_w

The matrices W_1 and W_2 contain centered data from visits 1 and 2, respectively.

W_1 <- as.matrix(g1.demeaned) # dim 884,5

W_2 <- as.matrix(g3.demeaned) # dim 884,5

Define the data, which contains the dimension of the level 1 space, dim.space_b, the dimension of the level 2 space, dim.space_w,
the level 1 and 2 eigenfunctions, psi_1 and psi_2, the data matrices for visit 1 and 2,
the number of subjects, N_subj, the maximum number of observations per subject, N_obs

data <- list("dim.space_b","dim.space_w","psi_subj","psi_subvis","W_1","W_2","N_subj","N_obs")

Define the program file (see below)

program.file.name <- "M:/mfpca_n884_2fpcLevel1_3fpcLevel2.txt" # See code below

Define the initial values

inits.W_1 <- matrix(rep(NA,N_subj*N_obs),ncol=N_obs)
inits.W_1[is.na(W_1)] <- mean(mean(W_1,na.rm=TRUE))

inits.W_2 <- matrix(rep(NA,N_subj*N_obs),ncol=N_obs)
inits.W_2[is.na(W_2)] <- mean(mean(W_2,na.rm=TRUE))

inits.ll_b <- rep(0.01,dim.space_b)
inits.ll_w <- rep(0.01,dim.space_w)

inits <- function(){list(xi=matrix(rep(0,N_subj*dim.space_b),ncol=dim.space_b),
zi=array(rep(0,N_subj*dim.space_w*2),c(N_subj,dim.space_w,2)),
taueps=0.01,li_b=inits.ll_b,li_w=inits.ll_w,W_1=inits.W_1,W_2=inits.W_2)}

Define the parameters to be monitored

parameters=list("lambda_b","xi[1:884,]","zi[1:884,]")

library(R2WinBUGS) # May need to install it first: install.packages("R2WinBUGS")
Define the thinning, iteration and burn-in numbers for the MCMC simulation

```r
set.seed(2708) # choose a number
n.thin <- 100  # this number is based on test-runs with close monitoring of a selected sub-sample of some of the parameters
n.iter <- 105000 # chosen on basis of the thinning, burn-in
n.burnin <- 5000 # convergence begins to stabilize around 2500, some structure in some curves until 3500, chooses 5000 to be sure.

ptm <- proc.time()
Bayes.fit <- bugs(data, inits, parameters, model.file = program.file.name, 
n.chains = 1, n.iter = n.iter, n.burnin = n.burnin, 
n.thin = n.thin, debug = FALSE, DIC = FALSE, digits = 5, 
codaPkg = FALSE, 
bugs.directory = "D:/winbugs14/WinBUGS14/")
proc.time() - ptm

autocorr.plot(as.mcmc.list(Bayes.fit), lag.max=50, auto.layout = TRUE) # only works if few parameters are monitored, 
                       # e.g. "lambda_b","xi[l:11,]","zi[l:11,]"
print(Bayes.fit)
plot(Bayes.fit)
head(Bayes.fit)
attach.bugs(Bayes.fit)

scores.11.subj <- colMeans(xi) # Subject-specific FPC scores
scores.12.subj.v1 <- colMeans(zi)[,1] # Subject- and visit-specific FPC scores, visit 1
scores.12.subj.v3 <- colMeans(zi)[,2] # Subject- and visit-specific FPC scores, visit 3

# Correlation table
round(cor(cbind(eval.g1,eval.g3,spssdata.term.complete.ogtt$auc1,spssdata.term.complete.ogtt$auc3, 
               scores.11.subj,scores.12.subj.v1,scores.12.subj.v3) ),2)

# Save FPC scores
scores.mfpca <- cbind(spssdata.term.complete.ogtt$id,scores.11.subj,scores.12.subj.v1,scores.12.subj.v3)
write.table(scores.mfpca, file="M:/Art5longitudinalFDA/Bayes_FDA/R2WinBUGS/scores.mfpca.may2013.csv")

# Read saved FPC scores from file
scores.mfpca <- read.table("M:/Art5longitudinalFDA/Bayes_FDA/R2WinBUGS/scores.mfpca.may2013.csv")
```
Figure 2

The 2*884 smoothed glucose curves

par(mar=c(1,1,1,1))
plot(g1.smooth, lty=1, col="black", lwd=2, ylim=c(-2,12.5), xlab="n", ylab="n", ann=FALSE)
plot(g3.smooth, lty=1, col="black", lwd=2, add=TRUE)
abline(h=0, col="grey", lwd=5)

Overall mean

par(mar=c(1,1,1,1))
plot(overallmean.eval.smooth, lty=1, lwd=5, col="black", ylim=c(-2,12.5), xlab="n", ylab="n", ann=FALSE)
abline(h=0, col="grey", lwd=5)

eta

par(mar=c(1,1,1,1))
plot(visitspecificmean1.eval.smooth$fd-overallmean.eval.smooth$fd, lty=1, lwd=5, col="black", ylim=c(-2,12.5), xlab="n", ylab="n", ann=FALSE)
plot(visitspecificmean3.eval.smooth$fd-overallmean.eval.smooth$fd, lty=1, lwd=5, col="black", xlab="n", ylab="n", ann=FALSE, add=TRUE)
abline(h=0, col="grey", lwd=5)

The estimated X-curves

par(mar=c(1,1,1,1))
plot(scores.mfpca[884,2]*psi.subj.smooth$fd[1]+scores.mfpca[884,3]*psi.subj.smooth$fd[2], lty=1, lwd=2, col="black", ylim=c(-2,12.5), xlab="n", ylab="n", ann=FALSE)
for(i in 1:884){
 plot(scores.mfpca[i,2]*psi.subj.smooth$fd[1]+scores.mfpca[i,3]*psi.subj.smooth$fd[2], lty=1, lwd=2, col="black", xlab="n", ylab="n", ann=FALSE, add=TRUE)
}
abline(h=0, col="grey", lwd=5)

The estimated U-curves

par(mar=c(1,1,1,1))
for(i in 1:884){
 plot(scores.mfpca[i,4]*psi.subvis.smooth.w$fd[1]+scores.mfpca[i,5]*psi.subvis.smooth.w$fd[2]+scores.mfpca[i,6]*psi.subvis.smooth.w$fd[3], lty=1, lwd=2, col="black", xlab="n", ylab="n", ann=FALSE, add=TRUE)
}
plot(scores.mfpca[i,7]*psi.subvis.smooth.w$fd[1]+scores.mfpca[i,8]*psi.subvis.smooth.w$fd[2]+scores.mfpca[i,9]*psi.subvis.smooth.w$fd[3], lty=1, lwd=2, col="black", xlab="n", ylab="n", ann=FALSE, add=TRUE)
abline(h=0, col="grey", lwd=5)

Visit-specific means

par(mar=c(1,1,1,1))
plot(visitspecificmean1.eval.smooth, lty=1, lwd=5, col="black", ylim=c(-2,12.5), xlab="n", ylab="n", ann=FALSE)
plot(visitspecificmean3.eval.smooth, lty=1, lwd=5, col="black", xlab="n", ylab="n", ann=FALSE, add=TRUE)
abline(h=0, col="grey", lwd=5)

B-splines-smoothed curves for woman no 828

par(mar=c(1,1,1,1))
plot(g1.smooth$fd[828], lty=1, lwd=5, col="black", ylim=c(-2,12.5), xlab="n", ylab="n", ann=FALSE)
plot(g3.smooth$fd[828], lty=1, lwd=5, col="black", add=TRUE)
X11() # Estimated X-curve for woman no 828
par(mar=c(1,1,1,1))
plot(scores.mfpca[828,2]*psi.subj.smooth$fd[1]+scores.mfpca[828,3]*psi.subj.smooth$fd[2],
 lty=1,lw=5,col="black",ylim=c(-2,12.5),xaxt='n', yaxt='n',ann=FALSE)
abline(h=0,col="grey",lw=5)

X11() # mu(t) + eta(t) + Xhat(t) for woman no 828
par(mar=c(1,1,1,1))
plot(visitspecificmean1.eval.smooth$fd+scores.mfpca[828,2]*psi.subj.smooth$fd[1]+scores.mfpca[828,3]*psi.subj.smooth$fd[2],
 lty=1,lw=5,col="black",ylim=c(-2,12.5),xaxt='n', yaxt='n',ann=FALSE)
 lty=1,lw=5,col="black", xaxt='n', yaxt='n',ann=FALSE,add=TRUE)
abline(h=0,col="grey",lw=5)

X11() # Estimated U-curves for woman no 828
par(mar=c(1,1,1,1))
 lty=1,lw=5,col="black",ylim=c(-2,12.5),xaxt='n', yaxt='n',ann=FALSE)
 lty=1,lw=5,col="black", xaxt='n', yaxt='n',ann=FALSE,add=TRUE)
abline(h=0,col="grey",lw=5)

X11() # mu(t) + eta(t) + Xhat(t) + Uhat(t) for woman no 828
par(mar=c(1,1,1,1))
 lty=1,lw=5,col="black",ylim=c(-2,12.5),xaxt='n', yaxt='n',ann=FALSE)
 lty=1,lw=5,col="black", xaxt='n', yaxt='n',ann=FALSE,add=TRUE)
abline(h=0,col="grey",lw=5)

X11() # B-splines-smoothed curves for woman no 828 and mu(t) + eta(t) + Xhat(t) + Uhat(t) for woman no 828 in the same plot
par(mar=c(1,1,1,1))
plot(g1.smooth$fd[828],lty=1,lw=5,col="black",ylim=c(-2,12.5),xaxt='n', yaxt='n',ann=FALSE)
plot(g3.smooth$fd[828],lty=1,lw=5,col="black",add=TRUE)
 lty=2,lw=5,col="black", xaxt='n', yaxt='n',ann=FALSE,add=TRUE)
 lty=2,lw=5,col="black", xaxt='n', yaxt='n',ann=FALSE,add=TRUE)
abline(h=0,col="grey",lw=5)
The program file, "M:\mfpca_n884_2fpcLeve11_3fpcLeve12.txt"

```r
model
  (#Start model
  for (i in 1:N_subj)
    {for (t in 1:N_obs)
      {W_1[i,t]~dnorm(m_1[i,t],taueps)
        W_2[i,t]~dnorm(m_2[i,t],taueps)
        m_1[i,t]<-X[i,t]+U_1[i,t]
        m_2[i,t]<-X[i,t]+U_2[i,t]
        X[i,t] <-xi[i,1]*psi_subj[t,1]+xi[i,2]*psi_subj[t,2]
        U_1[i,t] <-zi[i,1,1]*psi_subvis[t,1]+zi[i,2,1]*psi_subvis[t,2]+zi[i,3,1]*psi_subvis[t,3]
        U_2[i,t] <-zi[i,1,2]*psi_subvis[t,1]+zi[i,2,2]*psi_subvis[t,2]+zi[i,3,2]*psi_subvis[t,3]
      }
    for (k in 1:dim.space_b)
      {xi[i,k]~dnorm(0,ll_b[k])}
    for (l in 1:dim.space_w)
      {zi[i,l,1]~dnorm(0,ll_w[l])
        zi[i,l,2]~dnorm(0,ll_w[l])
      }
    #
    for (k in 1:dim.space_b)
      {ll_b[k]~dgamma(1.0E-3,1.0E-3)
        lambda_b[k]<-1/ll_b[k]}
    for (l in 1:dim.space_w)
      {ll_w[l]~dgamma(1.0E-3,1.0E-3)
        lambda_w[l]<-1/ll_w[l]}
    taueps~dgamma(1.0E-3,1.0E-3)
    sigma_sq_eps<-1/taueps
  }#End model
```