Statistical estimates of the number of non-randomly distributed mutations.

Suppose that \(X_1, X_2, \ldots, X_m \) is an independent sample of size \(m \), each taking values in \(\{0, 1\} \). Of the \(m \) observations, an unknown number \(n \) take the value 1 whereas the other \(m - n \) are Bernoulli random variables having

\[
P(X_i = 1) = p = 1 - P(X_i = 0), \quad i = 1, 2, \ldots, m - n.
\]

The random variable \(Y = X_1 + \cdots + X_m \) is observed, and the aim is to estimate the parameter \(n \) and provide some assessment of confidence in that estimate. In the present setting, \(m \) is the total number of mutations that are classified as either early or late, \(n \) is the number that must be early, and \(p \) is the probability that an unselected mutation is classified as early.

It is straightforward to calculate the distribution of \(Y \). To obtain \(Y = y \), the \(m - n \) randomly classified mutations must result in \(y - n \) being early. Hence we have

\[
P(Y = y) = \binom{m - n}{y - n} p^{y-n} (1-p)^{m-y}, \quad y = n, n + 1, \ldots, m.
\]

To find the maximum likelihood estimator (MLE) of \(n \), we assume that \(y \) and \(p \) are given, so that the likelihood for the unknown parameter \(n \) is, from (2),

\[
L(n) = \binom{m - n}{y - n} p^{y-n} (1-p)^{m-y}, \quad n = 0, 1, \ldots, y; \quad n > y.
\]

The likelihood \(L(n) \) can be maximized numerically, for example using the statistical environment \(R \); the MLE need not be unique. Upper and lower confidence intervals for \(n \) may be found using the method described in Tingley and Li (1993). \(R \) code that implements this approach may be obtained from the authors.

Reference