Table S2. Apparent K_D values (μM) for PtdInsPs-PDZ interactions as determined by SPR equilibrium analysis. Standard deviations are calculated from three independent experiments.

<table>
<thead>
<tr>
<th>Protein</th>
<th>PtdIns3P</th>
<th>PtdIns4P</th>
<th>PtdIns5P</th>
<th>PtdIns(3,4)P2</th>
<th>PtdIns(3,5)P2</th>
<th>PtdIns(4,5)P2</th>
<th>PtdIns(3,4,5)P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFNB31_1</td>
<td>16 ± 1</td>
<td>13 ± 5</td>
<td>14 ± 3</td>
<td>8.3 ± 2</td>
<td>5.8 ± 1</td>
<td>7.8 ± 2</td>
<td>3.9 ± 1</td>
</tr>
<tr>
<td>SLC9A3R2_1</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>3.8 ± 0.9</td>
<td>5.3 ± 2</td>
<td>4.9 ± 1</td>
<td>4.8 ± 2</td>
</tr>
<tr>
<td>IL16_1</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>5.9 ± 2</td>
<td>8.9 ± 2</td>
<td>4.3 ± 2</td>
<td>5.5 ± 2</td>
</tr>
<tr>
<td>PARD3_1</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>6.3 ± 3</td>
<td>3.4 ± 1</td>
<td>8 ± 3</td>
<td>8.1 ± 1</td>
</tr>
<tr>
<td>MAGI1_6</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>6.4 ± 2</td>
<td>8.5 ± 2</td>
<td>7.4 ± 2</td>
<td>11 ± 4</td>
</tr>
<tr>
<td>LNX1_4</td>
<td>>20</td>
<td>>20</td>
<td>>20</td>
<td>13 ± 3</td>
<td>11 ± 5</td>
<td>14 ± 5</td>
<td>10 ± 5</td>
</tr>
<tr>
<td>SNTG1</td>
<td>>100</td>
<td>46 ± 10</td>
<td>>100</td>
<td>52 ± 11</td>
<td>35 ± 11</td>
<td>22 ± 3</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>CASK</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>34 ± 16</td>
<td>48 ± 15</td>
<td>25 ± 7</td>
<td>45 ± 20</td>
</tr>
<tr>
<td>SNTX27</td>
<td>65 ± 10</td>
<td>52 ± 15</td>
<td>60 ± 15</td>
<td>69 ± 10</td>
<td>50 ± 20</td>
<td>49 ± 20</td>
<td>34 ± 10</td>
</tr>
<tr>
<td>IL16_3</td>
<td>36 ± 11</td>
<td>32 ± 8</td>
<td>23 ± 5</td>
<td>>100</td>
<td>89 ± 40</td>
<td>76 ± 20</td>
<td>56 ± 20</td>
</tr>
<tr>
<td>MAGI3_3</td>
<td>>70</td>
<td>>70</td>
<td>>70</td>
<td>28 ± 6</td>
<td>36 ± 15</td>
<td>47 ± 14</td>
<td>32 ± 15</td>
</tr>
<tr>
<td>PDZD2_3</td>
<td>>60</td>
<td>>60</td>
<td>>60</td>
<td>45 ± 13</td>
<td>29 ± 5</td>
<td>35 ± 8</td>
<td>39 ± 4</td>
</tr>
<tr>
<td>PDZD11</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>71 ± 25</td>
<td>56 ± 16</td>
<td>49 ± 10</td>
</tr>
<tr>
<td>MPP7</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>25 ± 8</td>
</tr>
<tr>
<td>DFNB31_3</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>86 ± 10</td>
<td>94 ± 13</td>
<td>67 ± 15</td>
</tr>
<tr>
<td>MPDZ_6</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>77 ± 30</td>
</tr>
<tr>
<td>MPDZ_7</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>80 ± 20</td>
</tr>
<tr>
<td>ERBB2IP</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>70 ± 20</td>
</tr>
<tr>
<td>SCRIB_4</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>