Noise propagation in gene regulation networks involving interlinked positive and negative feedback loops

(*Supplementary Text S3*)

Hui Zhang, Yueling Chen, Yong Chen*

* E-mail: ychen@lzu.edu.cn

Figure 1. The role of the noise autocorrelation time τ_0 and the time scale of the protein reaction ϵ on signal sensitivity. The sensitivity of protein S_ϕ and miRNA S_μ as function of τ_0 (A, C) and ϵ (B, D), respectively. Parameters are $\alpha = 0.15, \gamma_1 = 1.0, \gamma_2 = 1.3, \kappa = 4.5$.
Figure 2. The role of the noise autocorrelation time τ_0 and the time scale of the protein reaction ε on signal sensitivity with initial steady off-state in bistable region. The sensitivity of protein S_ϕ and miRNA S_μ as function of τ_0 (A, C) and ε (B, D), respectively. Parameters are $\alpha = 0.15$, $\gamma_1 = 1.0$, $\gamma_2 = 1.3$, $\kappa = 4.5$.

Figure 3. The role of the noise autocorrelation time τ_0 and the time scale of the protein reaction ε on signal sensitivity in monostable region with on-state. The sensitivity of protein S_ϕ and miRNA S_μ as function of τ_0 (A, C) and ε (B, D), respectively. Parameters are $\alpha = 0.15$, $\gamma_1 = 1.0$, $\gamma_2 = 1.0$, $\kappa = 4.5$.
Figure 4. The role of the noise autocorrelation time \(\tau_0 \) and the time scale of the protein reaction \(\varepsilon \) on signal sensitivity in monostable region with off-state. The sensitivity of protein \(S_\phi \) and miRNA \(S_\mu \) as function of \(\tau_0 \) (A, C) and \(\varepsilon \) (B, D), respectively. Parameters are \(\alpha = 0.15 \), \(\gamma_1 = 1.0 \), \(\gamma_2 = 1.9 \), \(\kappa = 4.5 \).

Figure 5. The role of the noise autocorrelation time \(\tau_0 \) and the time scale of the protein reaction \(\varepsilon \) on noise amplification with initial steady off-state in bistable region. (A, D) The noise amplification in the protein module and miRNAs as a function of \(\varepsilon \) and \(\tau_0 \). The noise amplification evolves with \(\tau_0 \) for different \(\varepsilon \) (B, E), and with \(\varepsilon \) for different \(\tau_0 \) (C, F), respectively. Parameters are \(\alpha = 0.15 \), \(\gamma_1 = 1.0 \), \(\gamma_2 = 1.3 \), \(\kappa = 4.5 \).
Figure 6. The role of the noise autocorrelation time τ_0 and the time scale of the protein reaction ε on noise amplification in monostable region with on-state. (A, D) The noise amplification in the protein module and miRNAs as a function of ε and τ_0. The noise amplification evolves with τ_0 in input signal for different ε (B, E), and ε for different τ_0 (C, F), respectively. Parameters are $\alpha = 0.15$, $\gamma_1 = 1.0$, $\gamma_2 = 1.0$, $\kappa = 4.5$.

Figure 7. The role of the noise autocorrelation time τ_0 and the time scale of the protein reaction ε on noise amplification in monostable region with off-state. (A, D) The noise amplification in the protein module and miRNAs as a function of ε and τ_0. The noise amplification evolves with τ_0 for different ε (B, E), and ε for different τ_0 (C, F), respectively. Parameters are $\alpha = 0.15$, $\gamma_1 = 1.0$, $\gamma_2 = 1.9$, $\kappa = 4.5$.